• 제목/요약/키워드: Faults Diagnosis

검색결과 513건 처리시간 0.029초

Fault Diagnosis Management Model using Machine Learning

  • Yang, Xitong;Lee, Jaeseung;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.128-134
    • /
    • 2019
  • Based on the concept of Industry 4.0, various sensors are attached to facilities and equipment to collect data in real time and diagnose faults using analyzing techniques. Diagnostic technology continuously monitors faults or performance degradation of facilities and equipment in operation and diagnoses abnormal symptoms to ensure safety and availability through maintenance before failure occurs. In this paper, we propose a model to analyze the data and diagnose the state or failure using machine learning. The diagnosis model is based on a support vector machine (SVM)-based diagnosis model and a self-learning one-class SVM-based diagnostic model. In the future, it is expected that this model can be applied to facilities used in the entire industry by applying the actual data to the diagnostic model proposed in this paper, conducting the experiment, and verifying it through the model performance evaluation index.

인버터 입력전류 분석을 이용한 유도전동기 고장진단 (Diagnosis of Induction Motor Faults Using Inverter Input Current Analysis)

  • 한정호;송중호;최규형
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.492-498
    • /
    • 2016
  • 운전 중인 유도전동기에 고장이 발생하면, 구동장치 등 전체 시스템에 2차적인 고장을 유발 시킬 수 있다. 이 경우 구동시스템의 신뢰도와 안전성이 저하되고, 경제적인 손실을 초래할 뿐만 아니라, 인명 피해의 위험 등 많은 문제가 발생할 수 있다. 따라서 유도전동기의 고장징후를 조기 감지하여 전체 시스템 고장을 방지할 수 있도록 하는 유도전동기 고장진단 방법이 필요하다. 본 논문은 유도전동기에서 고정자권선의 부분 단락과 회전자 바의 균열이 발생하는 경우, 인버터 입력전류를 분석하여 고장징후를 조기 감지하는 유도전동기 고장진단 방법을 제안한다. 제안한 고장진단 방법은 고정자 전류 3개를 모두 센싱해야 하는 기존 고장진단 방법과 달리, 인버터 입력전류 센서 한 개만으로 유도전동기 고장진단이 가능하다. 또한, 정상전류 주파수성분과 고장전류 주파수성분이 서로 분리되어 나타나는 인버터 입력전류 특성을 통해 기존 고장진단 방법보다 비교적 쉽고 확실한 고장진단이 가능하다. 시뮬레이션을 통하여 제안한 유도전동기 고장진단 방법의 우수성과 유효성을 확인한다.

FCM과 유클리디언 기반 거리유사도에 의한 전력용 변압기의 고장진단 (Fault Diagnosis of Power Transformer by FCM and Euclidean Based Distance Measure)

  • 이대종;이종필;지평식;임재윤
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1007-1016
    • /
    • 2007
  • In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for predicting faults of power transformer by FCM(Fuzzy c-means) and Euclidean based distance measure. The proposed technique make it possible to measures the possibility and degree of aging as well as the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

MTS 기법을 이용한 회전기기의 이상진단 (A Fault Diagnosis on the Rotating Machinery Using MTS)

  • 박원식;이해진;이정윤;김동섭;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.770-773
    • /
    • 2007
  • As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, it presents a study on the application of vibration signals to diagnose faults for a Rotating Machinery using the Mahalanobis Distance-Taguchi System. RMS, Crest Factor and Kurtosis that is known as the Statistical Methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.

  • PDF

마할라노비스 거리를 이용한 회전기기의 이상진단 (A Fault Diagnosis on the Rotating Machinery Using Mahalanobis Distance)

  • 박상길;박원식;정재은;이유엽;오재응
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.556-560
    • /
    • 2008
  • As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, we present a study on the application of vibration signals to diagnose faults for a Rotating Machinery using the Mahalanobis Distance-Taguchi System. RMS, Crest Factor and Kurtosis that is known as the Statistical Methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.

미지입력 관측기 설계기법을 이용한 선형 시스템의 고장진단 (Fault Diagnosis of Linear Systems Based on the Unknown Input Observer Design Technique)

  • 김민형;안비오;정준홍;이문희;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.578-580
    • /
    • 1997
  • A new method of Fault Diagnosis in linear systems using unknown input observer design technique is presented. This method is based upon the fact that the structural uncertainties, actuator faults, and sensor faults of a linear system can be rewritten in unknown inputs. The proposed method can simultaneously estimate the state variables of an actual system, as well as the actuator and sensor faults.

  • PDF

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

MTS 기법을 이용한 회전기기의 이상진단 (A Fault Diagnosis on the Rotating Machinery Using MTS)

  • 박상길;박원식;이유엽;김동섭;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.619-623
    • /
    • 2008
  • As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, it presents a study on the application of vibration signals to diagnose faults for a rotating machinery using the Mahalanobis distance-Taguchi system. RMS, crest factor and Kurtosis that is known as the statistical methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

A Comparative Study of Two Diagnostic Methods Based on the Switching Voltage Pattern for IGBT Open-Circuit Faults in Voltage-Source Inverters

  • Wang, Yuxi;Li, Zhan;Xu, Minghui;Ma, Hao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1087-1096
    • /
    • 2016
  • This paper reports an investigation conducted on two diagnostic methods based on the switching voltage pattern of IGBT open-circuit faults in voltage-source inverters (VSIs). One method was based on the bridge arm pole voltage, and the other was based on bridge arm line voltage. With an additional simple circuit, these two diagnostic methods detected and effectively identified single and multiple open-circuit faults of inverter IGBTs. A comparison of the times for the diagnosis and anti-interference features between these two methods is presented. The diagnostic time of both methods was less than 280ns in the best case. The diagnostic time for the method based on the bridge arm pole voltage was less than that of the method based on the bridge arm line voltage and was 1/2 of the fundamental period in the worst case. An experimental study was carried out to show the effectiveness of and the differences between these two methods.