• Title/Summary/Keyword: Faults

Search Result 2,956, Processing Time 0.036 seconds

Fault Detection and Diagnosis of Winding Short in BLDC Motors Based on Fuzzy Similarity

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The turn-to-turn short is one major fault of the motor faults of BLDC motors and can appear frequently. When the fault happens, the motor can be operated without breakdown, but it is necessary to maintain the motor for continuous working. In past research, several methods have been applied to detect winding faults. The representative approaches have been focusing on current signals, which can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. In this study, the Park's vector method was used to extract the features and to isolate the faults from the current measured by sensors. Because this method can consider the three-phase current values, it is useful to detect features from one-phase and three-phase faults. After extracting two-dimensional features, the final feature was generated by using the two-dimensional values using the distance equation. The values were used in fuzzy similarity to isolate the faults. Fuzzy similarity is an available tool to diagnose the fault without model generation and the fault was converted to the percentage value that can be considered as possibility of the fault.

On-line Fault Detection and Diagnosis for Heat Exchanger of Variable Speed Refrigeration System Based on Current Information (전류정보를 이용한 가변속냉동시스템의 열교환기 실시간 고장 진단)

  • Lee, Dong-Gyu;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.88-94
    • /
    • 2007
  • This study deals with on-line fault detection and diagnosis for heat exchanger of variable speed refrigeration system. Conventional studies about fault of heat exchanger in refrigeration system have used temperature and pressure information. The temperature and pressure are able to be used valuably for faults detection of constant speed refrigeration system. However in case of variable speed refrigeration system, the temperature and pressure are no longer useful information for fault detection due to compensation effect of feedback controller. While current information is possible to detect faults of variable speed refrigeration system. The current information was detected in an inverter, it was used after transforming rms value. The faults of variable speed refrigeration system are divided into electrical faults and mechanical faults. We performed fault detection and diagnosis about heat exchanger among mechanical faults such as condenser fouling and evaporator fan fouling through some experiments.

  • PDF

A study on early faults detection of pressurizer pressure control system using MTS (MTS를 이용한 가압기 압력 제어 계통의 조기 고장 감지에 대한 연구)

  • Cha, Jae-Min;Kim, Joon-Young;Shin, Junguk;Yeom, Choongseob;Kang, Seong-Ki
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1385-1398
    • /
    • 2016
  • A pressurizer is a major equipment system in a nuclear power plant (NPP) and controls the reactor cooling system pressure within the allowable range. Faults in the pressurizer can be critical to the NPP; therefore, early fault detection in the pressurizer is significant for NPP safety. This study applies Mahalanobis Taguchi system (MTS), which is one of the promising pattern classification methods, based on the Mahalanobis distance concept and Taguchi quality engineering theory to the early fault detection problem of the pressurizer pressure control system. We conducted experiments using data from full scope NPP simulator based on a pressurizer pressure transmitter faults scenario to validate the faults detection performance of MTS. As a result, MTS can rapidly detect the faults compared to conventional faults detection based on single sensor monitoring.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

Universal Test Set for Programmable Storage/Logic Arrays (Programmable Storage/Logic Array에 대한 보편적인 Test Set)

  • Do, Yang-Hoe;Gwon, U-Hyeon;Kim, Chae-Yeong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 1985
  • Design techniques for programmable storage/logic arrays(SLA's) with easily testable features are discussed. The easily testable SLA's will be designed by using additional hardware to provide an easy means to set or check the states. These augmented SLA's have the very short universal test sequences such that the test patterns and responses are uniquely determined only by the size of the SLA's independently of the function of them. The types of faluts considered here are single and multiple stuck faults, crosspoint faults, and bridge faults in SLA's. Fault location and reapir of SLA's are also considered.

  • PDF

A New Method to Detect Inner/Outer Race Bearing Fault Using Discrete Wavelet Transform in Frequency-Domain

  • Ghods, Amirhossein;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.63-64
    • /
    • 2013
  • Induction motors' faults detection is almost a popular topic among researchers. Monitoring the output of motors is a key factor in detecting these faults. (Short-time) Fourier, (continuous, discrete) wavelet, and extended Park vector transformations are among the methods for fault detection. One major deficiency of these methods is not being able to detect the severity of faults that carry low energy information, e.g. in ball bearing system failure, there is absolutely no way to detect the severity of fault using Fourier or wavelet transformations. In this paper, the authors have applied the Discrete Wavelet Transform (DWT) frequency-domain analysis to detect bearing faults in an induction motor. In other words, in discrete transform which the output signal is decomposed in several steps and frequency resolution increases considerably, the frequency-band analysis is performed and it will be verified that first of all, fault sidebands become more recognizable for detection in higher levels of decomposition, and secondly, the inner race bearing faults turn out easier in these levels; and all these matter because of eliminating the not-required high energy components in lower levels of decomposing.

  • PDF

Slip Movement Simulations of Major Faults Under Very Low Strength

  • Park, Moo-Choon;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.61-75
    • /
    • 2000
  • Through modeling fault network using thin plate finite element technique in the San Andreas Fault system with slip rate over 1mm/year, as well as elevation, heat flow, earthquakes, geodetic data and crustal thickness, we compare the results with velocity boundary conditions of plate based on the NUVEL-1 plate model and the approximation of deformation in the Great Basin region. The frictional and dislocation creep constants of the crust are calculated to reproduce the observed variations in the maximum depth of seismicity which corresponds to the temperature ranging from $350^{\circ}C$ to $410^{\circ}C$. The rheologic constants are defined by the coefficient of friction on faults, and the apparent activation energy for creep in the lower crust. Two parameters above represent systematic variations in three experiments. The pattern of model indicates that the friction coefficient of major faults is 0.17~0.25. we test whether the weakness of faults is uniform or proportional to net slip. The geologic data show a good agreement when fault weakness is a trend of an additional 30% slip dependent weakening of the San Andreas. The results of study suggest that all weakening is slip dependent. The best models can be explained by the available data with RMS mismatch of as little as 3mm/year, so their predictions can be closely related with seismic hazard estimation, at least along faults where no data are available.

  • PDF

Design of Nonlinear Unknown Input Observer by SDRE Method and Fault Detection of Reaction Wheels (SDRE 기법을 이용한 비선형 미지입력 관측기 설계와 반작용 휠의 고장 검출)

  • Yoon, Hyungjoo;Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.284-290
    • /
    • 2013
  • The authors propose a nonlinear unknown input observer to estimate the angular speed of a satellite and to detect faults of reaction wheels. Input values are necessary to estimate the angular speed. Therefore, estimation errors are inevitable if faults occur in actuators or reaction wheels. Unknown input observers are useful to estimate the states of a system without being affected by unknown faults. The authors have designed a nonlinear unknown input observer by using the SDRE method and verified the proposed observer via numerical simulations. In spite of various and simultaneous faults, we have estimated the states and detected faults exactly by the proposed nonlinear unknown input observer.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.