• Title/Summary/Keyword: Faults

Search Result 2,959, Processing Time 0.024 seconds

Studies on the Performance Variation of a Variable Speed Vapor Compression System under Fault and Its Detection and Diagnosis (가변속 증기압축 냉동시스템에서 고장시의 성능변화와 고장 감지 및 진단에 관한 연구)

  • Kim Minsung;Kim Min Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • An experimental study has been peformed to develop a scheme for fault detection and diagnosis(FDD) in a vapor compression refrigeration system. This study is to analyze fault effect on the system performance and to find efficient diagnosis rules for easy determination of abnormal system operation. The refrigeration system was operated with a variable speed compressor to modulate cooling capacity. The FDD system was designed to consider transient load conditions. Four major faults were considered, and each fault was detected over wide operating load range by separating the system response to the load change. Rule-based method was used to diagnose and classify the system faults. From the experimental results, COP degradation due to the faults in a variable speed system is severer than that in a constant speed system. The method developed in this study can be used in the fault detection of refrigeration systems with a variable speed compressor.

Development of On-line Performance Diagnostic Program of a Helicopter Turboshaft Engine

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hye-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.34-42
    • /
    • 2009
  • Gas turbine performance diagnostics is a method for detecting, isolating and quantifying faults in gas turbine gas path components. On-line precise fault diagnosis can promote greatly reliability and availability of gas turbine in real time operation. This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module are used for reducing computer calculating time and a signal generation module for simulating real time performance data. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. Evaluation of the proposed on-line diagnostic program is performed through application to the helicopter engine health monitoring.

The Analysis Method on the Reliability of the School Network (학교 전산망 통신장비의 신뢰성 분석기법)

  • Lee, Joa-taek;Song, Ki-sang
    • The Journal of Korean Association of Computer Education
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 2000
  • As the information technology is being rapidly developed, Korean government supplies various communication equipments to schools and therefore, it causes difficulties to cope with various faults from complicated school network communication equipments. These faults come from many reasons for wasting school budget and decreasing effectiveness in school administration. From this, it is necessary to figure out the problems of school communication equipments and cope with these problems quickly and preventing those faults in advance. In this paper, we present the school communication equipments analysis methodology not only quantitative but also qualitative aspects. We are sure that applying this methodology may improve the effectiveness of school network equipments management.

  • PDF

A Study on the Defection of Arcing Faults in Transmission Lines and Development of Fault Distance Estimation Software using MATLAB (MATLAB을 이용한 송전선로의 아크사고 검출 및 고장거리 추정 소프트웨어 개발에 관한 연구)

  • Kim, Byeong-Cheon;Park, Nam-Ok;Kim, Dong-Su;Kim, Gil-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper present a new verb efficient numerical algorithm for arcing faults detection and fault distance estimation in transmission line. It is based on the fundamental differential equations describing the transients on a transmission line before, during and alter the fault occurrence, and on the application of the "Least Error Squares Technique"for the unknown model parameter estimation. If the arc voltage estimated is a near zero, the fault is without arc, in other words the fault is permanent fault. If the arc voltage estimated has any high value, the faust is identified as an fault, or the transient fault. In permanent faults case, fault distance estimation is necessary. This paper uses the model of the arcing fault in transmission line using ZnO arrestor and resistance to be implemented within EMTP. One purpose of this study is to build a structure for modeling of arcing fault detection and fault distance estimation algorithm using Matlab programming. In this paper, This algorithm has been designed in Graphic user interface(GUI).

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

Study on Fault Diagnostics of a Turboprop Engine Using Fuzzy Logic and BBNN (퍼지와 역전파신경망 기법을 사용한 터보프롭 엔진의 진단에 관한 연구)

  • Kong, Chang-Duk;Lim, Se-Myung;Kim, Keon-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • The UAV(Unmanned Aerial Vehicle) which is remotely operating with long endurance in high altitude must have a very reliable propulsion system. The precise fault diagnostic system of the turboprop engine as a propulsion system of this type UAV can promote reliability and availability. This work proposes a diagnostic method which can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. It is found by evaluation examples that the proposed diagnostic method can detect well not only single type faults but also multiple type faults.

Testing for Speed-Independent Asynchronous Circuits Using the Self-Checking Property (자가검사특성을 이용한 속도독립 비동기회로의 테스팅)

  • 오은정;이정근;이동익;최호용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.384-387
    • /
    • 1999
  • In this paper, we have proposed a testing methodology for Speed-Independent asynchronous control circuits using the self-checking property where the circuit detects certain classes of faults during normal operation. To exploit self-checking properties of Speed-Independent circuits, the Proposed methodology generates tests from the specification of the target circuit which describes the behavior of the circuit. The generated tests are applied to a fault-free and a faulty circuit, and target faults can be detected by the comparison of the outputs of the both circuits. For the purpose of efficient comparison, reachability information of the both circuits in the form of BDD's is used and operations are conducted by BDD manipulations. The identification for undetectable faults in testing is also used to increase efficiency of the proposed methodology. The proposed identification uses only topological information of the target circuit and reachability information of the good circuit which was generated in the course of preprocess. Experimental results show that high fault coverage is obtained for synthesized Speed-Independent circuits and the use of the identification process decreases the number of tests and execution time.

  • PDF

New Weight Generation Algorithm for Path Delay Fault Test Using BIST (내장된 자체 테스트에서 경로 지연 고장 테스트를 위한 새로운 가중치 계산 알고리듬)

  • Hur, Yun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.72-84
    • /
    • 2000
  • The test patterns for path delay faults consist of two patterns. So in order to test the delay faults, a new weight generation algorithm that is different from the weight generation algorithm for stuck-at faults must be applied. When deterministic test patterns for weight calculation are used, the deterministic test patterns must be divided into several subsets, so that Hamming distances between patterns are not too long. But this method makes the number of weight sets too large in delay testing, and may generate inaccurate weights. In this pater, we perform fault simulation without pattern partition. Experimental results for ISCAS 89 benchmark circuits prove the effectiveness of the new weight generation algorithm proposed in this paper.

  • PDF

Determination of the latest fault movement by trench survey at Galgok-Chisil site in the northern Ulsan fault system (울산단층북부 갈곡리 치실 지점의 마지막 단층 운동시기 결정)

  • Choi, Weon-Hack;Chang, Chun-Joong;Inoue, D.;Tanaka, T.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.11-17
    • /
    • 2005
  • Along the Ulsan Fault System, many Quaternary faults have been reported and investigated with outcrop observation and trench excavation to clarify the neotectonic movements and fault parameters such as length, displacement, slip rate and recurrence interval. In the northern part of the Ulsan fault system, we have interpreted small scale(1:10,000) aerial photographs and extracted lineaments by geomophological features to select trench site. After precise field survey and tracing for lineaments, two trench sites at Galgokri, Gyeongju were selected on the lineament to elucidate the fault movement history. One is successful in finding faults but the other is not. In the Galgok-Chisil trench(3m(w) x 1.5m(d) x 10m(l)), very closed two Quaternary faults cut the alluvial deposits of which age shows about 10-3ka. More than three times of fault movements can be inferred by geologic structures and C-14 dating. Repeatedly fault movements had been occurred before 10 ka, between 10ka-4.9 ka, between 4.9-1.4 ka at Galgok-Chisil trench section.

  • PDF

Incorporating Performance Degradation in Fault Tolerant Control System Design with Multiple Actuator Failures

  • Zhang, Youmin;Jiang, Jin;Theilliol, Didier
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.327-338
    • /
    • 2008
  • A fault tolerant control system design technique has been proposed and analyzed for managing performance degradation in the presence of multiple faults in actuators. The method is based on a control structure with a model reference reconfigurable control design in an inner loop and command input adjustment in an outer loop. The reduced dynamic performance requirements in the presence of different actuator faults are accounted for through different performance reduced (degraded) reference models. The degraded steady-state performances are governed by the reduced levels of command input. The reconfigurable controller is designed on-line automatically in an explicit model reference control framework so that the dynamics of the closed-loop system follow that of the performance reduced reference model under each fault condition. The reduced command input level is determined to prevent potential actuator saturation. The proposed method has been evaluated and analyzed using an aircraft example against actuator faults subject to constraints on the magnitude and slew-rate of actuators.