• Title/Summary/Keyword: Faults

Search Result 2,952, Processing Time 0.033 seconds

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

The Binomial Sensitivity Factor Hyper-Geometric Distribution Software Reliability Growth Model for Imperfect Debugging Environment (불완전 디버깅 환경에서의 이항 반응 계수 초기하분포 소프트웨어 신뢰성 성장 모델)

  • Kim, Seong-Hui;Park, Jung-Yang;Park, Jae-Heung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1103-1111
    • /
    • 2000
  • The hyper-geometric distribution software reliability growth model (HGDM) usually assumes that all the software faults detected are perfectly removed without introducing new faults. However, since new faults can be introduced during the test-and-debug phase, the perfect debugging assumption should be relaxed. In this context, Hou, Kuo and Chang [7] developed a modified HGDM for imperfect debugging environment, assuming tat the learning factor is constant. In this paper we extend the existing imperfect debugging HGDM for tow respects: introduction of random sensitivity factor and allowance of variable learning factor. Then the statistical characteristics of he suggested model are studied and its applications to two real data sets are demonstrated.

  • PDF

Vibration Characteristics of Worm Gear Faults for Elevators (승강기용 웜기어의 결함에 따른 진동 특성)

  • Lee, S.J.;Yang, B.S.;Lee, S.S.;Park, S.T.;Son, J.D.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • According to the survey, abnormal condition of the system is the main source for interrupting an elevator service, especially faults in worm gears used for the traction machine. Worm gear is popularly used in traction machine for middle and low speed elevators. Elevators need high reliability and stability, because they are closely related to human life. Usually, traction machine is applied to drive the elevators that have height about 35 m and it is an important mechanical unit for riding quality in elevators. There are some research results about types of vibration fault for worm gear in International Association Elevator Engineers (IAEE). But this study concerns with diagnosis of various faults in elevator worm gear using vibration signal. The analysis of fault characteristics is compared with previous researches in traction machine.

  • PDF

Fault diagnosis of rotating machinery using multi-class support vector machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • 황원우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.537-543
    • /
    • 2003
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the vibration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

  • PDF

Reconfiguration of Redundant Thrusters by Allocation Method

  • Jin, Jae-Hyun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.76-83
    • /
    • 2005
  • Thrusters are important actuators where air is rare. Since the maintenance or replacement of thrusters is not easy in such an environment, a thrusting system must be highly reliable. Redundant thrusters are used to meet the reliability requirement. In this paper, a reconfiguration problem for those redundant thrusters is discussed, especially the management or distribution logic of redundant thrusters is focused on. The logic has to be changed if faults occur at thrusters. Reconfiguration is to change the distribution logic to accommodate thrusters' faults. The authors propose a reconfiguration algorithm based on the linear programming method. The authors define the reconfiguration problem as an optimization problem. The performance index is a quantity related with total fuel consumption by thrusters. This algorithm can accommodate multiple faults. Numerical examples are given to show the advantage of the proposed algorithm over existing methods.

Determination of Hypocenter Parameters Using a Personal Computer (개인용 컴퓨터에 의한 지진의 진원인자 결정)

  • Kim, So Gu;Kim, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.359-365
    • /
    • 1992
  • The parameters of the Korean earthquake have been determined by the manual method, which results in consuming more time and more errors. In this study we used HYPO71PC to determine earthquake parameters and to identify unknown active faults and lineaments in South Korea. The epicenters determined by the new computer technique are almost identical with the manual method of Korea Meteorological Agency. It is also found that most of epicenters are coincident with unknown faults that are defined as the un-determined faults on the tectonic map of Korea, and/or structural lineaments in South Korea.

  • PDF

Simulation of a Resistive Superconducting Fault Current Limiter for Line Faults in the Power Grid (단락사고에 대한 저항형 초전도 한류기의 실계통 시뮬레이션)

  • 최효상;황시돌;현옥배
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1999
  • We have performed an EMTDC simulation for the current limiting effects of a superconducting fault current limiter (SFCL). The fault currents in the 154 kV transmission line between the arbitrary S1 and S2 substations increased up to 54 KA and 60 KA during the line-to-line and three phase faults, respectively. The SFCL with 100$\omega$ of resistance after quench limited the currents to less than 17 KA within a half cycle. This limited current is well below the upper limit of a circuit breaker, suggesting that the resistance of the SFCL in the transmission line is sufficient.

  • PDF

Fault Diagnosis and Neutral Point Voltage Control Under the Switch Fault in NPC 3-Level Voltage Source Inverter (NPC 3-레벨 인버터의 스위치 고장시 고장 진단과 중성점 불평형 전압 제어)

  • Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok;Son Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Many conventional multi-level inverters have detected switching faults by using the over voltage and current. However, fault detection of the switching elements is very difficult because the voltage and current due to each switching fault decrease more than the normal operation. Moreover, the dc-link unbalancing voltage causes a serious problem in the safety and reliability of system when the 3-level inverter faults occur Therefore, this paper proposes the simple fault diagnose method and the neutral-point-voltage control method that can protect the 3-level inverter system from the unbalancing voltage of the do-link capacitors when the faults of switching elements occur in the 3-level inverter that is very efficient in ac motor drives of the high voltage and high power applications. Through experiment results, the validity of the proposed method is demonstrated.

Digital Relaying Algorithm for Power Transformer Protection using Fuzzy Logic Approach

  • Park, Chul-Won;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.153-159
    • /
    • 2002
  • Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with relaying signals obtained from EMTP simulation package and showed a fast and accurate trip operation.