• Title/Summary/Keyword: Fault-tolerance

Search Result 570, Processing Time 0.022 seconds

A Six Pole Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Uhn Joo Na
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.231-238
    • /
    • 2023
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 6-active-pole, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. some numerical examples of distribution matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed bearing.

Determination of the profit-maximizing configuration for the modular cell manufacturing system using stochastic process (실시간 고장포용 생산시스템의 적정 성능 유지를 위한 최적 설계 기법에 관한 연구)

  • Park, Seung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.614-621
    • /
    • 1999
  • In this paper, the analytical appproaches are presented for jointly determining the profit-miximizing configuration of the fault-tolerance real time modular cell manufacturing system. The transient(time-dependent) analysis of Markovian models is firstly applied to modular cell manufacturing system from a performability viewpoint whose modeling advantage lies in its ability to express the performance that truly matters - the user's perception of it - as well as various performance measures compositely in the context of application. The modular cells are modeled with hybrid decomposition method and then availability measures such as instantaneous availability, interval availability, expected cumulative operational time are evaluated as special cases of performability. In addition to this evaluation, sensitivity analysis of the entire manufacturing system as well as each machining cell is performed, from which the time of a major repair policy and the optimal configuration among the alternative configurations of the system can be determined. Secondly, the recovery policies from the machine failures by computing the minimal number of redundant machines and also from the task failures by computing the minimum number of tasks equipped with detection schemes of task failure and reworked upon failure detection, to meet the timing requirements are optimized. Some numerical examples are presented to demonstrate the effectiveness of the work.

  • PDF

A Verification of Replicated Operation In P2P Computing (P2P 컴퓨팅에서 중복 수행 결과의 정확성 검증 기법)

  • Park, Chan Yeol
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • Internet-based P2P computing with independent machines suffers from frequent disconnections and security threats caused by leaving, failure, network diversity, or anonymity of participated machines. Replication schemes of shared resources are used for solving these issues in many studies and implementations. We propose an operational replication scheme in P2P computing to share computing resources, and the scheme verifies the correctness of operation against faults and security threats. This verifications are carried out periodically on replicated and dependent working units without global message exchanges over the whole system. The verified working units are treated as checkpoints, and thus they could be put to practical use for fault-tolerance with rollback recovery.

  • PDF

Design of a Cascaded H-Bridge Multilevel Inverter Based on Power Electronics Building Blocks and Control for High Performance

  • Park, Young-Min;Ryu, Han-Seong;Lee, Hyun-Won;Jung, Myung-Gil;Lee, Se-Hyun
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • This paper proposes a practical design for a Cascaded H-Bridge Multilevel (CHBM) inverter based on Power Electronics Building Blocks (PEBB) and high performance control to improve current control and increase fault tolerance. It is shown that the expansion and modularization characteristics of the CHBM inverter are improved since the individual inverter modules operate more independently, when using the PEBB concept. It is also shown that the performance of current control can be improved with voltage delay compensation and the fault tolerance can be increased by using unbalance three-phase control. The proposed design and control methods are described in detail and the validity of the proposed system is verified experimentally in various industrial fields.

MediaFrame: Parallel multimedia system architecture through HTTP redirection (미디어 프레임: HTTP 리디렉션을 통한 병렬 멀티미디어 시스템 구조)

  • Kim, Seong-Ki;Han, Sang-Yong
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.15-24
    • /
    • 2007
  • As a single video server exposes its limitation in scalability, capability, fault-tolerance, and cost-efficiency, solutions of this limitation emerge. However, these solutions have their own problems that will be discussed in this paper. To solve these problems and exploit various video silvers, we designed a parallel multimedia system architecture that supported a content-aware routing to heterogeneous personal computer (PC), operating system (OS), video servers through a HTTP-level redirection. We also developed a prototype, added different video servers into the prototype, and measured its overheads.

Design of Resource Grouping for Desktop Grid Computing and Its Application Methods to Fault-Tolerance (데스크톱 그리드 컴퓨팅을 위한 자원 그룹핑 설계 및 결함포용으로의 적용 방안)

  • Shon, Jin Gon;Gil, Joon-Min
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.171-178
    • /
    • 2013
  • Desktop grid computing is the computing paradigm that can execute large-scale computing jobs using the desktop resources with heterogeneity and volatility. However, such the computing environment can not guarantee the stability and reliability of task execution because the desktop resources with different performance can freely participate and leave in task execution. Therefore, in this paper, we design resource grouping scheme using k-means clustering algorithm with an aim to provide desktop grid computing with the stability and reliability of task execution. Moreover, we conduct resource grouping using the execution log data of actual desktop grid systems and present application methods of desktop resource groups to fault-tolerance.

A Study of Multipath Routing based on Software-Defined Networking for Data Center Networking in Cloud Computing Environments (클라우드 컴퓨팅 환경에서 데이터 센터 네트워킹을 위한 소프트웨어 정의 네트워킹 기반 다중 경로 라우팅 연구)

  • Kang, Yong-Hyeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.563-564
    • /
    • 2017
  • The core of the cloud computing technology is the data center in that the networking technology is important. Cloud data centers are comprised of tens or even hundreds of thousands of physical servers, so networking technology is required for high-speed data transfer. These networking technologies also require scalability, fault tolerance, and agility. For these requirements, many multi-path based schemes have been proposed. However, it was mainly used for load balancing of traffic and select a path randomly. In this paper, a scheme that can construct a multipath using software defined networking technology and transmit the traffic in parallel by using the multipath to achieve a fast transmission speed, solve the scalability problem and fault tolerance is proposed.

  • PDF

A Checkpointing Framework for Dependable Real-Time Systems (고신뢰 실시간 시스템을 위한 체크포인팅 프레임워크)

  • Lee, Hyo-Soon;Shin, Heonshik-Sin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.176-184
    • /
    • 2002
  • We provide a checkpointing framework reflecting both the timeliness and the dependability in order to make checkpointing applicable to dependable real-time systems. The predictability of real-time tasks with checkpointing is guaranteed by the worst case execution time (WCET) based on the allocated number of checkpoints and the permissible number of failures. The permissible number of failures is derived from fault tolerance requirements, thus guaranteeing the dependability of tasks. Using the WCET and the permissible number of failures of tasks, we develop an algorithm that determines the minimum number of checkpoints allocated to each task in order to guarantee the schedulability of a task set. Since the framework is based on the amount of time redundancy caused by checkpointing, it can be extended to other time redundancy techniques.

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

A RFID-Based Multi-Robot Management System Available in Indoor Environments (실내 환경에서 운영 가능한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 2008
  • The multi robot operation technique has emerged as one of the most important research subjects that focus on minimizing redundancy in space exploration and maximizing the efficiency of operation. For an efficient operation of the multi robot systems, the movement of each Single robot in the multi robot systems should be properly observed and controlled. This paper suggests Multi Robot Management System to minimize redundancy in space exploration by assigning exploration space to each robot efficiently to take advantage of the RFID. Also, this paper has suggested fault tolerance technique that detects disable Single robot and substitute it by activated Single robot in order to ensure overall exploration and improve efficiency of exploration. Proposed system overcomes previous fault that it is difficult for central server to detect exact position of robot by using RFID system and Home Robot. Designated Home robot manages each Single robot efficiently and assigns the best suited space to Single robot by using RFID Tag Information. Proposed multi robot management system uses RFID for space assignment, Localization and Mapping efficiently and not only maximizes the efficiency of operation, but also ensures reliability by supporting fault-tolerance, compared with Single robot system. Also, through simulation, this paper proves efficiency of spending time and redundancy rates between multi robot management applied by proposed system and not applied by proposed system.

  • PDF