• 제목/요약/키워드: Fault-current reduction

검색결과 82건 처리시간 0.03초

Study on Application of Superconducting Fault Current Limiter Considering Risk of Circuit Breaker Short-Circuit Capacity in a Loop Network System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1789-1794
    • /
    • 2014
  • This paper suggests an application method for a superconducting fault current limiter (SFCL) using an evaluation index to estimate the risk regarding the short-circuit capacity of the circuit breaker (CB). Recently, power distribution systems have become more complex to ensure that supply continuously keeps pace with the growth of demand. However, the mesh or loop network power systems suffer from a problem in which the fault current exceeds the short-circuit capacity of the CBs when a fault occurs. Most case studies on the application of the SFCL have focused on its development and performance in limiting fault current. In this study, an analysis of the application method of an SFCL considering the risk of the CB's short-circuit capacitor was carried out in situations when a fault occurs in a loop network power system, where each line connected with the fault point carries a different current that is above or below the short-circuit capacitor of the CB. A loop network power system using PSCAD/EMTDC was modeled to investigate the risk ratio of the CB and the effect of the SFCL on the reduction of fault current through various case studies. Through the risk evaluations of the simulation results, the estimation of the risk ratio is adequate to apply the SFCL and demonstrate the fault current limiting effect.

Operation characteristics of SFCLs combined with a transformer in three-phase power system

  • Jung, B.I.;Choi, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.30-33
    • /
    • 2013
  • The studies of superconducting fault current limiter (SFCL) for reduction of the fault current are actively underway in the worldwide. In this paper, we analyzed the characteristics of a new type SFCL using the conventional transformer and superconducting elements combined mutually. The secondary and third windings of this SFCL were connected the load and the superconducting element, respectively. The electric power was provided to load connected to secondary windings of the transformer in normal state of power system. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the ripple phenomenon of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the CT(current transformer) and then turn-on and turn-off switching behavior of the SFCL was performed by the SCR(silicon-controlled rectifier). As a result, the proposed SFCL limited the fault current within a half-cycle efficiently. We confirmed that the fault current limitation rate was changed according to the winding ratio of a transformer.

Comparison of Fault Current Reduction Effects by the SFCL Introduction Locations

  • Kim Jong Yul;Lee Seung Ryul;Yoon Jae Young
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.16-20
    • /
    • 2005
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154kV system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154kV Superconducting Fault Current Limiter (SFCL) to 154kV transmission systems is proceeding with implementation slated for after 2010. In this paper, SFCL is applied to reduce the fault current in power systems according to two different application schemes and their technical impacts are evaluated. The results indicate that both application schemes can regulate the fault current under the rating of circuit breaker, however, applying SFCL to the bus-tie location is much more appropriate from an economic view point.

삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석 (Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch)

  • 정병익;최효상;박정일;조금배
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

EMTCD를 이용한 154kV 송전계통에서의 초전도 한류기 적용 해석 (Application Analysis of a Resistive type SFCL for Transmission Systems)

  • 허태전;배형택;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.409-411
    • /
    • 2004
  • The need for Fault Current Limiters (FCL) is associated with the continuous growth and interconnection of modem power systems and increase in dispersed generation facilities, which result in progressive increase in the short circuit capacity far beyond their original design capacity. Fault Current Limiters (FCL) clips the fault currents and reduces the electromechanical stresses on the network and the need to handle excessive fault currents. In addition, the reduction of the fault duration Provided by the limiter should increase the power transmission capability and improve the dynamic stability. This paper proposes the model of resistive type superconducting fault current limiter using EMTDC(Electromagnetic transients for DC analysis program). In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current in a transmission system through the EMTDC based simulation by using the modeled component of a resistive type SFCL is peformed and the detailed results are given.

  • PDF

자기결합형 고온초전도한류기의 과도전류 해석 (The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter)

  • 주민석;추용;임도현;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

초전도 한류기 투입저항 변화에 따른 여자돌입전류 저감률 분석 (Analysis of Inrush Current Reduction Rate According to Insertion Resistance of the Superconducting Fault Current Limiter)

  • 박세호;서훈철;이상봉;김철환;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.257-258
    • /
    • 2008
  • The inrush current of a transformer is a high-magnitude and harmonic-rich current generated when the transformer core is driven into saturation during energizing. The inrush current usually leads to undesirable effects, for example potential damage to the transformer, misoperation of a protective relay, and power quality deterioration in the distribution power system. Inrush current reduction is therefore important for power system operation. In this paper, to reduce the inrush current, the insertion resistance of the Superconducting Fault Current Limiter (SFCL) that is connected in series with the transformer in the distribution system is used. This paper implements the SFCL by using the Electromagnetic Transient Program-Restructured Version (EMTP-RV) to model the SFCL in the distribution system. The simulation results show the beneficial effects of the SFCL for reduction of the inrush current.

  • PDF

비대칭 고장전류 저감을 위한 재폐로 차단기 제어 방안 (A Control Scheme of Recloser for Asymmetrical Fault Current Reduction)

  • 이상봉;김철환;서훈철;고윤태;김규호;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.215_216
    • /
    • 2009
  • This paper presents a asymmetry fault current reduction scheme with recloser operation during transient period. The principle of asymmetry current nature is reviewed and asymmetry components reduction with recloser operation is explained. Throughout the simulation, results verifies the proposed scheme for recloser operation and its effectiveness.

  • PDF

Python을 이용한 유전 알고리즘 기반의 수도권 고장전류 저감을 위한 BTB HVDC 최적 위치 선정 기법에 관한 연구 (A Study on Selecting the Optimal Location of BTB HVDC for Reducing Fault Current in Metropolitan Regions Based on Genetic Algorithm Using Python)

  • 송민석;김학만;이병하
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1163-1171
    • /
    • 2017
  • The problem of fault current to exceed the rated capacity of a power circuit breaker can cause a serious accident to hurt the reliability of the power system. In order to solve this issue, current limiting reactors and circuit breakers with increased capacity are utilized but these solutions have some technical limitations. Back-to-back high voltage direct current(BTB HVDC) may be applied for reducing the fault current. When BTB HVDCs are installed for reduction in fault current, selecting the optimal location of the BTB HVDC without causing overload of line power becomes a key point. In this paper, we use genetic algorithm to find optimal location effectively in a short time. We propose a new methodology for determining the BTB HVDC optimal location to reduce fault current without causing overload of line power in metropolitan areas. Also, the procedure of performing the calculation of fault current and line power flow by PSS/E is carried out automatically using Python. It is shown that this optimization methodology can be applied effectively for determining the BTB HVDC optimal location to reduce fault current without causing overload of line power by a case study.

Impedance Calculation of an Underground Transmission Cable System Installed with a Sheath Current Reduction Device

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Wang, Xin Heng;Song, Yong Hua
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.236-242
    • /
    • 2004
  • Previous research results indicated that the designed current reduction device could effectively reduce the sheath circulating current and that its RDP protection device could shield it against both fault and lightning strokes. In this paper, cable impedance is analyzed using wavelet analysis and distance relay algorithm following the installation of these devices so that the operation of distance relay can be estimated. The test results confirm that in these devices, the fault inception angle and SVL bonding types have no impact on the change of cable impedance. In other words, the conventional distance relay can be used without a new relay setting. Thus we can finally assert that the designed current reduction device and its protection device are effective and can be safely installed on the cable transmission system without disturbance.