• Title/Summary/Keyword: Fault-Tolerance

Search Result 570, Processing Time 0.028 seconds

Fault Tolerant System Modeling based on Real-Time Object (실시간 객체 기반 결함허용 시스템 모델링)

  • Im, Hyeong-Taek;Yang, Seung-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2233-2244
    • /
    • 1999
  • It is essential to guarantee high reliability of embedded real-time systems since the failure of such systems may result in large financial damage or threaten human life. Though many researches have devoted to fault tolerant mechanisms, most of them are object-level fault tolerant mechanisms that can detect errors occurred in a single object and treat the errors in object-level. As embedded real-time systems become more complex and larger, there exist faults that cannot be detected by or tolerated with object-level fault tolerance. Hence, system-level fault tolerance is needed. System-level fault tolerance examines the status of a system whether the system is normal or not by analyzing the status of objects. When an error is detected it should be capable of locating the fault and performing an appropriate recovery and reconfiguration action. In this paper, we propose RobustRTO(Robust Real-Time Object) that provides object-level fault tolerance capability and RMO(Region Monitor real-time Object) that offers system-level fault tolerance capability. Then we show how highly dependable fault tolerant systems can be modeled by RobustRTO and RMO. The model is presented based on real-time objects.

  • PDF

An Adaptive Checkpointing Scheme for Fault Tolerance of Real-Time Control Systems with Concurrent Fault Detection (동시 결함 검출 기능이 있는 실시간 제어 시스템의 결함 허용성을 위한 적응형 체크포인팅 기법)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The checkpointing scheme is a well-known technique to cope with transient faults in digital systems. This paper proposes an adaptive checkpointing scheme for the reliability improvement of real-time control systems with concurrent fault detection capability. With concurrent fault detection capability the effect of transient faults are assumed to be detected with no latency. The proposed adaptive checkpointing scheme is based on the reliability analysis of an equidistant checkpointing scheme. Numerical data show the proposed adaptive scheme outperforms the equidistant scheme from a reliability point of view.

Development of a Fault-tolerant Intelligent Monitoring and Control System in Machining (절삭공정에서 Fault-tolerance 기능을 갖는 지능형 감시 및 제어시스템의 개발)

  • Choi, Gi-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.470-476
    • /
    • 1997
  • The dynamic characteristics of industrial processes frequently cause an abnormal situation which is undesirable in terms of the productivity and the safety of workers. The goal of fault-tolerance is to continue performing certain activities even after the failure of some system cononents. A fault-tolerant intelligent monitoring and control system which is robust under disturbances is proposed in this paper. Specifically, the fault-tolerant monitoring scheme proposed consists of two process models and the inference module to preserve such a robustness. The results of turning experiments demonstrate the effectiveness of the fault-tolerant scheme in the presence of built-up edge.

Corrective Control of Asynchronous Sequential Machines for Tolerating Permanent Faults (교정 제어를 이용한 비동기 순차 머신의 영구 고장 극복)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.9-17
    • /
    • 2010
  • Corrective control compensates the stable-state behavior of asynchronous sequential machines so that the closed-loop system can be changed in a desirable way. Using corrective control, we present a novel fault tolerance scheme that overcomes permanent faults for asynchronous sequential machines. When a permanent fault occurs to an asynchronous machine, the fault is not recovered forever while the machine is irreversibly stuck in a set of failure states. But, if the machine has control redundancy in the limited behavior range, corrective control can be applied to solve the fault tolerance problem against permanent faults. We present the condition on detecting permanent faults and the existence condition of an appropriate corrective controller. The design procedure for the proposed controller is described in a case study.

Design of Reliable Adaptive Filter with Fault Tolerance Using TMS320C32 (TMS320C32를 이용한 고장허용을 갖는 신뢰 적응 필터 설계)

  • Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2429-2432
    • /
    • 2000
  • Adaptive filter algorithm has been used for plant identifier and noise cancellation. This algorithm has been researched for performance enhancement of filtering. The design and development of a reliable system has been becoming a key issue in industry field because the reliability of a system is considered as an important factor to perform the system's function successfully. And the computing with reliability and fault tolerance is a important factor in the case of aviation and nuclear plant. This paper presents design of reliable adaptive filter with fault tolerance. Generally, redundancy is used for reliability. In this case it needs computing or circuit for voting mechanism or computing for fault detection or switching part. But this presented Filter is not in need of computing for voting mechanism, or fault detection. Therefore it has simple computing, and practicality for application. And in this paper, reliability of adaptive filter is analyzed. The effectiveness of the proposed adaptive filter is demonstrated to the case studies of plant identifier and noise cancellation by using DSP.

  • PDF

A Method for Improving Interface Fault Tolerance in the Embedded Software (임베디드 소프트웨어의 인터페이스 결함허용성 향상 기법)

  • Choi, In Hwa;Paik, Jong Ho;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Generally, there can be a interface discrepancy between the legacy hardware and the new software in combining new software component with reused hardware components in the embedded system. This kind of the interface discrepancy may cause various types of faults and also result in declining interface fault tolerance. In this paper we propose a method to improve interface fault tolerance. First of all, the new interface discrepancy fault type which has not been dealt with before is to be defined and next the testing method for generating test paths is proposed by considering the new defined interface discrepancy fault type in this paper. Several tests show that the proposed method detects more fatal faults about 7.9% in comparison with the existing testing method for commercial broadcasting receiver. Since the proposed method can provide software developers with test paths to be available earlier on the software development cycle, in addition, software developers can regard on interface discrepancy fault in advance. Consequently, more efficient test planning can be established to improve the interface fault tolerance.

Fault Tolerance System running on Distributed Multimedia (분산 멀티미디어에서의 결함 허용 시스템)

  • Hong, Sung-Ryong;Ko, Eung-Nam
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.123-126
    • /
    • 2015
  • This paper described fault tolerance system running on distributed multimedia. We implemented the error manager service so that the users participated in distribute multimedia collaborative work may refer synchronized error objects as the same view to others. distributed multimedia environment are based on IP-USN(Internet Protocol - Ubiquitous Sensor Network) and M2M(Machine to machine). This is a system that is suitable for detecting, sharing and recovering software error in distribute multimedia CSCW(Computer Supportes Cooperated Work) environment. With error synchronization system, a group cooperating users can synchronize error applications.

Optimal Software Release Using Time and Cost Benefits via Fuzzy Multi-Criteria and Fault Tolerance

  • Srivastava, Praveen Ranjan
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.21-54
    • /
    • 2012
  • As we know every software development process is pretty large and consists of different modules. This raises the idea of prioritizing different software modules so that important modules can be tested by preference. In the software testing process, it is not possible to test each and every module regressively, which is due to time and cost constraints. To deal with these constraints, this paper proposes an approach that is based on the fuzzy multi-criteria approach for prioritizing several software modules and calculates optimal time and cost for software testing by using fuzzy logic and the fault tolerance approach.

A Study on the Design of a Fault-Tolerance Rotor Magnetic Bearing Systems (고장허용 회전체 자기베어링 시스템의 설계 연구)

  • 조성락;경진호;노승국;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.304-308
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings. These failure modes include power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults. In this paper, we designed and tested a fault-tolerant magnetic bearing system. The system can cope with the actuator faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.