• Title/Summary/Keyword: Fault tolerant design

Search Result 196, Processing Time 0.033 seconds

Design of Fault Detection and Recovery Mechanism for Fault Tolerant CORBA (고장 감내형 CORBA를 위한 객체 그룹간 고장인지 및 회복 메커니즘의 설계)

  • 박종필;김유성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.267-269
    • /
    • 1999
  • 고장 감내형 CORBA*Fault Tolerant Common Object Broker Architecture)는 분산 객체 시스템 통합기술의 표준인 CORBA에 고장에 대한 회복수단을 제공하기 위해 제안되었다. CORBA에 고장 감내성을 추가하기 위해서는 객체단위의 중복그룹의 관리, 호출 구조 및 이에 따른 고장인지 및 회복기법이 필요하다. 기존에 제안된 분산 시스템 환경에서의 고장인지 및 회복기법들은 프로세스 단위의 동작, 실행시간에 생성된 객체의 동적 환경구성 기능의 부제 등의 문제로 고장 감내형 CORBA에 적용시키기에는 많은 문제점을 가지고 있다. 따라서, 본 논문에서는 사용자에게 고장투명성과 연속적인 서비스 제공을 보장하는 고장 가내형 CORBA에 필요한 핵심기술인 객체 그룹간 고장인지 방법 및 고장으로부터의 회복 메커니즘을 제안한다.

  • PDF

On the Fault Detection and Isolation Systems using Functional Observers (함수 관측자를 이용한 고장검출식별기법에 관한 연구)

  • Lee, Kee-Sang;Ryu, Ji-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.883-890
    • /
    • 2003
  • Two GOS (Generalized Observer Scheme) type Fault Detection Isolation Schemes (FDIS), employing the bank of unknown input functional observers (UIFO) as a residual generator, are proposed to make the practical use of the multiple observer based FDIS. The one is IFD (Instrument Fault Detection) scheme and the other is PFD (Process Fault Detection) scheme. A design method of UIFO is suggested for robust residual generation and reducing the size of the observer bank. Several design objectives that can be achieved by the FDI schemes and the design methods to meet the objectives are described. An IFD system is constructed for the Boeing 929 Jetfoil boat system to show the effectiveness of the propositions. Major contributions of this paper are two folds. Firstly, the proposed UIFO approaches considerably reduce the size of residual generator in the GOS type FDI systems. Secondly, the FDI schemes, in addition to the basic functions of the conventional observer-based FDI schemes, can reconstruct the failed signal or give the estimates of fault magnitude that can be used for compensating fault effects. The schemes are directly applicable to the design of a fault tolerant control systems.

Fault Tolerant Controller Design for Supersonic Advanced Trainer Using Model Following Adaptive Technique (모델추종 적응제어기법을 이용한 초음속 고등훈련기의 고장허용제어기 설계)

  • Kim, Seung-Keun;Lee, Ho-Jin;Yoon, Seung-Ho;Han, Young-Su;Kim, You-Dan;Kim, Chong-Shup;Cho, In-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.464-469
    • /
    • 2009
  • In this study, a new fault tolerant controller based on a model following adaptive technique is applied to the reconfiguration mode of supersonic advanced trainer. The designed controller is applied to the flight control system of high performance aircraft. To verify the performance of the proposed controller, numerical simulations are executed using a non-realtime nonlinear verification tool.

Design of Fault-tolerant Mutual Exclusion Protocol in Asynchronous Distributed Systems (비동기적 분산 시스템에서 결함허용 상호 배제 프로토콜의 설계)

  • Park, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • This paper defines the quorum-based fault-tolerant mutual exclusion problem in a message-passing asynchronous system and determines a failure detector to solve the problem. This failure detector, which we call the modal failure detector star, and which we denote by $M^*$, is strictly weaker than the perfect failure detector P but strictly stronger than the eventually perfect failure detector ◇P. The paper shows that at any environment, the problem is solvable with $M^*$.

The Design of Fail-Safe Comparator by HDL (HDL을 이용한 고장안전(Fail-Safe) 인터페이스 설계)

  • 양성현;백순흠
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.803-816
    • /
    • 2001
  • This paper presents the design of strongly fail-safe interface which transform binary signals, generated by fault-tolerant system into fail-safe signals. The strongly fail-safe property is achived by means of self-checking techniques. It can be shown for this interface to be integreated while the conventional fail-safe interface require using discrete components. This paper also presents the new implementation methods by the definitions for fail-safe system.

  • PDF

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

A Design of Adaptive Fault Tolerant Control System (적응 FTCS의 설계)

  • Lee, Kee-Sang;Park, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.372-375
    • /
    • 1989
  • In this paper, a new FTCS with the ability to perform original control objective without considerable loss of control performance in the face of any fault is proposed. The FTCS is composed of two interacting units, Adaptive Controller Unit and Fault Detection/Classification, where ACU performs primary control objective with basic process information(I/O) and environmental information fed by FDU and where FDU detect and classify faults and make decision on remidial action by the use of information provided by ACU.

  • PDF

Fault Tolerant Processor Design for Aviation Embedded System and Verification through Fault Injection (항공용 임베디드 시스템을 위한 고장감내형 프로세서 설계와 오류주입을 통한 검증)

  • Lee, Dong-Woo;Ko, Wan-Jin;Na, Jong-Wha
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we applied the forward and backward error recovery techniques to a reduced instruction set computer (risc) processor to develop two fault-tolerant processors, namely, fetch redundant risc (FRR) processor and a redundancy execute risc (RER) processor. To evaluate the fault-tolerance capability of three target processors, we developed the base risc processor, FRR processor, and RER processor in SystemC hardware description language. We performed fault injection experiment using the three SystemC processor models and the SystemC-based simulation fault injection technique. From the experiments, for the 1-bit transient fault, the failure rate of the FRR, RER, and base risc processor were 1%, 2.8%, and 8.9%, respectively. For the 1-bit permanent fault, the failure rate of the FRR, RER, and base risc processor were 4.3%, 6.5%, and 41%, respectively. As a result, for 1-bit fault, we found that the FRR processor is more reliable among three processors.

Investigation of Fault-Mode Behaviors of Matrix Converters

  • Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.949-959
    • /
    • 2009
  • This paper presents a systematic investigation of the fault-mode behaviors of matrix converter systems. Knowledge about converter behaviors after fault occurrence is important from the standpoint of reliable system design, protection and fault-tolerant control. Converter behaviors have been, in detail, examined with both qualitative and quantitative approaches for key fault types, such as switch open-circuited faults and switch short-circuited faults. Investigating the fault-mode behaviors of matrix converters reveals that converter operation with switch short-circuited faults leads to overvoltage stresses as well as overcurrent stresses on other healthy switching components. On the other hand, switch open-circuited faults only result in overvoltage to other switching components. This study can be used to predict fault-mode converter behaviors and determine additional stresses on remaining power circuit components under fault-mode operations.

A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System (종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬)

  • 이경수;문일기;안장모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.