
한국산학기술학회논문지

Vol. 11, No. 1, pp. 182-189, 2010

182

Design of Fault-tolerant Mutual Exclusion Protocol in

Asynchronous Distributed Systems

Sung-Hoon Park1*

1Dept. of Computer Engineering, Chungbuk National University

비동기적 분산 시스템에서 결함허용 상호 배제 프로토콜의 설계

박성훈1*

1
충북대학교 컴퓨터공학과

Abstract This paper defines the quorum-based fault-tolerant mutual exclusion problem in a message-passing

asynchronous system and determines a failure detector to solve the problem. This failure detector, which we call

the modal failure detector star, and which we denote by M*, is strictly weaker than the perfect failure detector

P but strictly stronger than the eventually perfect failure detector ◇P. The paper shows that at any environment,

the problem is solvable with M*.

요 약 본 논문에서는 비동기적 분산시스템에서 고장 추적 장치를 이용한 상호배제의 문제를 서술하고 이러한 문제

를 해결하는 가장 약한 고장 추적 장치를 결정하고자 한다. 이를 위해서 M*라고 정의한 modal failure detector star

고장 추적 장치를 정의하고 M*를 이용해서 상호배제 문제는 비동기적 분산 시스템에서 해결 가능함을 보인다. M*는

perfect failure detector P보다 확실히 약하며 eventually perfect failure detector ◇P보다는 강한 고장추적 장치이다.

본 논문에서는 어떤 환경 안에서 이러한 문제가 해결 가능함을 보인다.

Key Words : Mutual Exclusion, Failure Detector, Fault-Tolerant System, Asynchronous Distributed Systems

This work was supported by the research grant of the Chungbuk National University in 2008
*

Corresponding Author : Sung-Hoon Park(spark@cbnu.ac.kr)

Received December 9, 2009 Revised December 28, 2009 Accepted January 20, 2010

1. Introduction

1.1 Background

We address the fault-tolerant quorum-based mutual

exclusion problem, simply FTQME, in an asynchronous

distributed system. In the system, the communication

between a pair of processes is by a message-passing

primitive, channels are reliable and processes can fail by

crashing. In distributed systems, many applications such

as replicated data management, directory management and

distributed shared memory requires that a shared resource

is allocated to a single process at a time. This is called

the problem of mutual exclusion [5, 8, 9, 10, 11, 12, 17].

More precisely, the quorum-based mutual exclusion

problem specified with two properties: 1) only one

process can access a single, indivisible resource at a time,

what is called mutual exclusion (ME) 2) The user

accessing the resource is said to be in its critical section

(CS) and if a correct process (i.e., a process that does not

crash) wants to enter its critical section, then it eventually

will be in its critical section, what is called progress

property (PP), even if some process crashed while in the

critical section [2,6].

The problem of mutual exclusion becomes much more

complex in distributed systems (as compared to

single-computer systems) due to the lack of both a shared

memory and a common physical clock and because of

unpredictable message delays.

Design of Fault-tolerant Mutual Exclusion Protocol in Asynchronous Distributed Systems

183

Evidently, the problem cannot be solved

deterministically in a crash-prone asynchronous system

without any information about failures. There is no way

to determine that a process in its CS is crashed or just

slow. Clearly, no deterministic algorithm can guarantee

fault-tolerant progress and mutual exclusion

simultaneously. In this sense, the problem stems from the

famous impossibility result that consensus cannot be

solved deterministically in an asynchronous system that is

subject to even a single crash failure [7].

1.2 Failure Detectors

In this paper, we introduced a modal failure detector

M* and showed that the mutual exclusion problem is

solvable with it in the environment with majority correct

processes. The concept of (unreliable) failure detectors

was introduced by Chandra and Toueg [3,4], and they

characterized failure detectors by two properties:

completeness and accuracy. Based on the properties, they

defined several failure detector classes: perfect failure

detectors P, weak failure detectors W, eventually weak

failure detectors ◊W and so on. In [3] and [4] they

studied what is the "weakest" failure detector to solve

consensus. They showed that the weakest failure detector

to solve consensus with any number of faulty processes is

Ω+S and the one with faulty processes bounded by ⌈n/2

⌉ (i.e., less than ⌈n/2⌉ faulty processes) is ♢W. After

the work of [8], several studies followed. For example,

the weakest failure detector for stable leader election is

the perfect failure detector P [4], and the one for

Terminating Reliable Broadcast is also P [1, 3].

Recently, as the closest one from our work, Guerraoui

and Kouznetsov showed a failure detector class for mutual

exclusion problems that is different from the above

weakest failure detectors. The failure detector called the

Trusting failure detector satisfies the three properties, i.e.,

strong completeness, eventual strong accuracy and trusting

accuracy so that it can solve the mutual exclusion

problem in asynchronous distributed systems with crash

failure. And they used the bakery algorithm to solve the

mutual exclusion problem with the trusting failure

detector.

1.3 Contributions

How about the quorum-based mutual exclusion

problem? More precisely, what is the weakest failure

detector to solve the quorum-based mutual exclusion

problem? The bakery algorithm is completely different

from the quorum-based ME in which the order of getting

the critical section is decided based on a ticket order. In

contrast to the bakery algorithm, the quorum-based ME

algorithm should receive the permissions from all

members of a quorum to exclusively use the critical

section.

In general, quorum-based mutual exclusion algorithms

assume that the system is either a failure-free model

[13,14,16,19], or a synchronous model in which (1) if a

process crash, it is eventually detected by every correct

process and (2) no correct process is suspected before

crash [13, 16]: with the conjunction of (1) and (2), the

system is assumed to equipped with the capability of the

perfect failure detector P [3]. In other words, the perfect

failure detector P is sufficient to solve the fault-tolerant

quorum-based mutual exclusion problem. But is P

necessary? For the answer to the question, we present a

modal failure detector star M*, that is a new failure

detector we introduce here, which is strictly weaker than

P (but strictly stronger than ◇P the eventually perfect

failure detector of [3]). We show that the answer is “no”

and we can solve the problem using the modal failure

detector star M*. Roughly speaking, failure detector M*

satisfies (1) eventual strong accuracy and (2) strong

completeness together with (3) modal accuracy, i.e.,

initially, every process is suspected, after that, any process

that is once confirmed to be correct is not suspected

before crash. If M* suspects the confirmed process again,

then the process has crashed. However, M* might suspect

temporarily every correct process before confirming it’s

alive as well as might not suspect temporarily a crashed

process before confirming it’s crash. Intuitively, M* can

thus make at least one mistake per every correct process

and algorithms using M* are, in terms of a practical

distributed system view, more useful than those using P.

We here present the algorithm to show that M* is

sufficient to solve fault tolerant quorum-based mutual

exclusion and it is inspired by the well-known Grid-based

algorithm of Maekawa [11,15-17]: a process that wishes

to enter its CS first gets admissions from the one of

quorums. M* guarantees that a crash of the process which

has been confirmed at least once will be eventually

한국산학기술학회논문지 제11권 제1호, 2010

184

detected by every correct process in the system.

We show that, in addition to mutual exclusion and

progress, our algorithm guarantees also a fairness

property, ensuring that any process which wants to get in

a CS is eventually granted to access the CS

(starvation-freedom property). We do not consider here

probabilistic mutual exclusion algorithms [4,7].

1.4 Road Map

The rest of the paper is organized as follows. Section

2 addresses motivations and related works and Section 3

overviews the system model. Section 4 introduces them

modal failure detector star M*. Section 5 shows that M*

is sufficient to solve the problem, respectively. Section 6

concludes the paper with some practical remarks.

2. Motivations and Related Works

Actually, the main difficulty in solving the mutual

exclusion problem in presence of process crashes lies in

the detection of crashes. As a way of getting around the

impossibility of consensus, Chandra and Toug extended

the asynchronous model of computation with unreliable

failure detectors and showed in [4] that the FLP

impossibility can be circumvented using failure detectors.

More precisely, they have shown that consensus can be

solved (deterministically) in an asynchronous system

augmented with the failure detector ◊S (Eventually

Strong) and the assumption of a majority of correct

processes. Failure detector ◊S guarantees Strong

Completeness, i.e., eventually, every process that crashes

is permanently suspected by every process, and Eventual

Weak Accuracy, i.e., eventually, some correct process is

never suspected. Failure detector ◊S can however make

an arbitrary number of mistakes, i.e., false suspicions.

A quorum-base mutual exclusion problem, simply

QME, is an agreement problem so that it is impossible to

solve in asynchronous distributed systems with crash

failures. This stems from the FLP result which mentioning

the consensus problem can’t be solved in asynchronous

systems. Can we also circumvent the impossibility of

solving QME using some failure detector? The answer is

of course “yes”. The Grid-based algorithm of Maekawa

[16] solves the QME problem with assuming that it has

the capability of the failure detector P (Perfect) in

asynchronous distributed systems. This failure detector

ensures Strong Completeness (recalled above) and Strong

Accuracy, i.e., no process is suspected before it crashes

[2]. Failure detector P does never make any mistake and

obviously provides more knowledge about failures than ♢

S. But it is stated in [7] that Failure detector ♢S cannot

solve the ME problem, even if only one process may

crash. This means that ME is strictly harder than

consensus, i.e., ME requires more knowledge about

failures than consensus. An interesting question is then

“What is the weakest failure detector for solving the QME

problem in asynchronous systems with unreliable failure

detectors?” In this paper, as the answer to this question,

we show that there is a failure detector that solves QME

weaker than the Perfect Failure Detector. This means that

the weakest failure detector for QME is not a Perfect

Failure Detector P.

3. The Model

We consider in this paper a crash-prone asynchronous

message passing system model augmented with the failure

detector abstraction [2].

3.1 The Fault-tolerant Quorum-based Mutual

Exclusion Problem

We define here the fault-tolerant quorum-based mutual

exclusion problem (from now on -FTQME) using the

terminology and notations given in [6,13]. Let ∏ denote

a nonempty set of n processes. We associate to every

process i ∈ Π a user, ui that can require exclusive access

to the critical section. The users can be thought of as

application programs. As in [14], every process i ∈ Π

and every user ui are modeled as state machines. A

process i ∈ Π and the corresponding user ui interact

using tryi, criti, exiti and remi actions. The input actions

of process i (and outputs of ui) are the tryi action,

indicating the wish of ui to enter its CS, and the exiti

action, indicating the wish of ui to leave its critical

section. The output actions of i (and inputs of ui) are the

criti action, granting the access to its critical section, and

Design of Fault-tolerant Mutual Exclusion Protocol in Asynchronous Distributed Systems

185

the remi action, which tells ui that it can continue its

work out of its critical section. A sequence of tryi, criti,

exiti and remi actions for the composition (ui, i) is called

a well-formed execution if it is a prefix of the cyclically

ordered sequence {tryi, criti, exiti, remi}. A user ui is

called a well-formed user if it does not violate the cyclic

order of actions tryi, criti, exiti, remi, ... A mutual

exclusion algorithm defines trying and exit protocols for

every process i. We say that the algorithm solves the

FTQME problem if, under the assumption that every user

is well-formed, any run of the algorithm satisfies the

following properties:

Mutual exclusion: No two different processes are in

their CS at the same time.

Starvation freedom: Every request for its CS is

eventually granted.

Fairness: Different requests must be granted in the

order they are made.

Note that Mutual exclusion is a safety property while

Starvation freedom is liveness properties. Let ∏ denote a

nonempty set of n processes as defined in the previous

section. A coterie C is a set of sets, where each set Q in

C is called a quorum. The following conditions hold for

quorums in a coterie C under ∏ [6]:

∀Qi ∈ C : Qi ≠ ∅ ∧ Qi ⊆ U

Minimality Property : No quorum is a subset of

another quorum. ∀Qi, Qj∈C : Qi ≠ Qj:¬(Qi ⊆ Qj)

Intersection Property : Every two quorums intersect ∀

Qi,Qj ∈C : Qi∩ Qj ≠ ∅.

For example, C = {{a, b}, {b, c}} is a coterie under

∏ = {a, b, c} and Qi = {a, b} is a quorum. The concept

of intersecting quorum captures the essence of mutual

exclusion in distributed systems. That is, process i

executes its CS only after it has locked all the processes

in a quorum Qj ∈C in exclusive mode. To do this,

process i sends request messages to all the processes in

Qj. On receipt of the request message, the process j of the

quorum Qj immediately sends a reply message to i

(indicating j has been locked by i) only if j is not locked

by some other process at that time. The process i can

access the CS only after receiving permission (i.e., reply

messages) from all the processes in the quorum P. After

having finished the CS execution, i sends release

messages to all the processes in the quorum Qj to unlock

them. Since any pair of quorums have at least one process

in common (by the Intersection Property), mutual

exclusion is guaranteed. The Minimality Property is not

necessary for correctness, but it is useful for efficiency.

4. The Modal Failure Detector Star M*

Each module of failure detector M* outputs a subset of

the range 2
∏

. Initially, every process is suspected.

However, if any process is once confirmed to be correct

by any correct process, then the confirmed process id is

removed from the failure detector list of M*. If the

confirmed process is suspected again, the suspected

process id is inserted into the failure detector list of M*.

The most important property of M*, denoted by model

Accuracy, is that a process that was once confirmed to be

correct is not suspected before crash. Let HM be any

history of such a failure detector M*. Then HM(i,t)

represents the set of processes that process i suspects at

time t. For each failure pattern F, M(F) is defined by the

set of all failure detector histories HM that satisfy the

following properties:

· Strong Completeness: There is a time after which

every process that crashes is permanently suspected by

every correct process:

- ∀i,j ∈ ∏, ∀i ∈ correct(F), ∀j ∈ F(t), ∃ t’’:∀t’

> t’’, j ∈ H(i, t’).

· Eventual Strong Accuracy: There is a time after

which every correct process is never suspected by any

correct process. More precisely:

- ∀i,j ∈ ∏,∀i ∈ correct(F), ∃t:∀t’ > t, ∀j ∈

correct(F), j ∉ H(i, t’).

· Modal Accuracy: Initially, every process is suspected.

After that, any process that is once confirmed to be

correct is not suspected before crash. More precisely: - ∀

i,j ∈ ∏: j ∈ H(i,t0), t0 < t < t’, j ∉ H(i,t) ∧ j ∈ ∏

- F(t’) => j ∉ H(i, t’)

Note that model Accuracy does not require that failure

detector M* keeps the Strong Accuracy property over

every process all the time t. However, it only requires that

failure detector M* never makes a mistake before crash

about the process that was confirmed at least once to be

correct.

If process M* outputs some crashed processes, then

M* accurately knows that they have crashed, since they

한국산학기술학회논문지 제11권 제1호, 2010

186

had already been confirmed to be correct before crash.

However, concerning those processes that had never been

confirmed, M* does not necessarily know whether they

crashed (or which processes crashed).

5. Solving FTQME Problem with M*

We give in Figure 1 an algorithm solving FTQME

using M* in any environment where at least one quorum

is available. The algorithm uses the fact that eventual

strong accuracy property of M*. More precisely, with

such a property of M* and the assumption of at least one

quorum being available, we can implement our algorithm

of Figure 1. Note here that we don’t consider the dead

lock situation where two or more processes concurrently

trying to obtain permissions from each number of

quorums but only get in infinitely waiting. In this

algorithm, we assume that there is a mechanism to resolve

the dead lock.

Var status: {rem,try,incs,wait}initially rem

Var my_token: initially true

Var my_token_holder: initially NULL

Var token :initiallyempty list

Var my_quorumi: initially empty

Periodically(t) do

 request M* for HM

1. Upon received (trying,upper_layer)

2. if not (status = try)then

3. wait until ∃Qk : ∀j ∈Qk : j∉ HM

4. statusi:=try

5. send (ask_permit,i)to∀j ∈ Qk

6. my_quorum:= Qk

7. Upon received (ok_pemit,j)

8. token:=token ∪ { j }

9. If my_quorum=token then

10. enter CS

11. OnExitCS

12. send(return_permit,i)to

 ∀j∈ my_quorum

 status:= rem

13. Upon received (no_permit,j)

14. send(return_permit,i) to ∀i ∈ token

15. token: = ∅

16. goto tryi

17. Upon received (ask_permit,j)

18. wait until j ∉ HM

19. if my_token=true then

20. send(ok_permit,j)

21. my_token_holder:=j

22. my_token:=false

23. else

24. send(no_permit,j)

25. Upon received HM fromMi

26. if (my_token = false

 ∧my_token_holder∈HM) then

27. my_token:= true

28. Upon received (return_permit,j)

29. my_token:=true

30. my_token_holder:=NULL

[Figure 1] FTQME algorithm using M
*
 : process i.

We give in Figure 1 an algorithm solving FTQME

using M* in any environment E with any number of

correct processes (f < n).

Our algorithm of Figure 1 assumes:

- Each process i has access to the output of its modal

failure detector module Mi*;

- At least one quorum is available;

- Each process i is well-formed;

- A dead lock resolving mechanism is installed;

In our algorithm of Figure 1, each process i has the

following variables:

1. A variable status, initially rem, represents one of the

following states {rem,try,incs,wait};

2. A boolean my_tokeni, initially true, indicating

whether i has the its token;

3. A variable my_token_holderi, initially NULL, which

denotes the token holder when i send its token to

other node;

Design of Fault-tolerant Mutual Exclusion Protocol in Asynchronous Distributed Systems

187

4. A list token_listi, initially empty, keeping the tokens

that i has received from each member of a quorum.

Description of [Line 1-6] in Figure 1; the idea of our

algorithm is inspired by the well-known Quorum-based

ME algorithm of Maekawa [11, 12]. That is, the processes

that wish to enter their CS first wait for a quorum whose

members are all alive based on the information HM

from its failure detector M*. Those processes

eventually find out the quorum by the eventual strong

accuracy property of M* in line 3 of Figure 1 and then

sets its status to “try”, meaning that it is try to get in CS.

It sets the variable my_quorum with Qk and send the

message “(ask_permit,i)” to all nodes in the quorum.

Description of [Line 7-8] in Figure 1; the candidate

asking for a permission to proceed from every process of

one quorum does not take steps until the all permissions

are received from the quorum. But it eventually received

all permissions from a quorum and enter the CS due to

the assumption of installed dead lock resolving

mechanism in the system and it get in CS.

Description of [11-12] in Figure 1; On exit from the

CS, the node sends “return_permit” to the every member

of the quorum from which it received permissions. It set

its status with “rem” meaning that it is in normal mode.

Notice that no candidate i can be served if other process

j is accessing the resource. That is because while other

process j is serving but not yet releasing the resource, the

candidate i can not obtain all permission from the quorum

(line 13 in Figure 1).

Description of [13-16] in Figure 1; If the candidate

received the message “no_permit” from the a node of

quorum, it returns all received permissions from the

quorum to every member of the quorum and after that it

try again.

Description of [17-24] in Figure 1; The node i,

received “ask_permit” from node j, first checks that j is

alive and if it is alive then the node i sends its

“ok_permit” to the node i when it has its token. But if the

node i has no token, it send the message “no_permit” to

the node j.

Description of [25-27] in Figure 1; When the node i

received the failure detector history HM from M*, if it

knows that a node holding its token died, it regenerates

its token again.

Description of [28-30] in Figure 1; Upon received

“return_permit” from node j, node i sets its “my_token”

with true meaning that it has its token.

Now we prove the correctness of the algorithm of

Figure 1 in terms of two properties : mutual exclusion

and progress . Let R be an arbitrary run of the algorithm

for some failure pattern F ∈ E (f < n). Therefore we

prove Lemma 1 and 2 for R respectively.

Lemma 1. (mutual exclusion property) No two

different processes are in their CSs at the same time.

Proof: By contradiction, assume that i and j (i≠j) are

in their CSs at time t’. According to the line 7-9 of the

algorithm 1, no process enters its CS before receiving

permissions from a quorum. Thus i must have received all

permissions from each member of a quorum and j must

have received all permissions from each member of a

quorum before t’.

Without loss of generality, assume the event that i

received all permission from a quorum precedes the event

that j received all permission from other quorum. That is,

at some time t’’ < t’, j received all permissions from a

quorum while i is entering CS but before exits from CS.

That means that at some time t’’ < t’, j passed the

(my_quorum = token) clause in line 9 while i is still in

CS. Thus, one of the following events occurred before t’’

at every member of a quorum:

(1) Every member of quorum j has a token and sends

(Ok_Permit, j): by the algorithm of Figure 1. But by

intersection property of quorum, i is in the CS at t’ > t’’

and at least one member of the quorum does not have a

token: a contradiction.

(2) Every member of quorum j received HM from Mj

and i∈ HM by the algorithm of Figure 1, at some time

t’’ < t’. Thus, we can assume that the following is true:

i ∉ HM at time t’and i ∈ HM at time t’’. By the model

accuracy property of M, i is crashed at t’’. But it is in

the CS at t’ > t’’ : a contradiction. Hence, mutual

exclusion is guaranteed.

Lemma 2. If a correct process request for the CS, then

at some time later the process eventually enters in its CS.

Proof: Assume that a correct process i volunteers at

time t’, and no correct process is ever in its CS after t’.

According to the algorithm, after t’, process i never

reaches line 9 of the algorithm. In other words, i is

blocked at some wait clause. The first wait clause (line 3

한국산학기술학회논문지 제11권 제1호, 2010

188

in Figure 1) is not able to block the process, due to the

modal accuracy (1) property of M* and the fact that (n>f)

processes are correct. Thus, eventually, statusi = try, and

wait clause in line 5-6 in Figure 1 cannot block the

process neither. Thus, i issues send (ask_permit, i). The

second received clause (more precisely, the statement in

line 17 in Figure 1) is not blocking neither, because of

the guarantee that any send message is eventually

delivered by every correct process. Thus, i is blocked in

the third clause (line 7-8 in Figure 1) while processing

some token := token ∪ { j }. We show that if a correct

process i is blocked while processing some token from j,

then process j is blocked and it never sends (ok_permit,

j) nor (no_permit, j). But j is never blocked since it is

always in one of two states, i.e., my_token is true or not.

So contradiction.

Theorem 1: The algorithm of Figure 1 solves FTQME

using M*, in any environment E with f < n/2, combining

with two lemmas 1 and 2.

6. Concluding Remark

Is it beneficial in practice to use a mutual exclusion

algorithm based on M*, instead of a traditional algorithm

assuming P? The answer is “yes”. Indeed, if we translate

the very fact of not trusting a correct process into a

mistake, then M* clearly tolerates mistakes whereas P

does not. More precisely, M* is allowed to make up to

n2 mistakes (up to n mistakes for each module Mi, i∈

Π). As a result, M*’s implementation has certain

advantages comparing to P’s (given synchrony

assumptions). For example, in a possible implementation

of M*, every process i can gradually increase the timeout

corresponding to a heart-beat message sent to a process j

until a response from j is received. Thus, every such

timeout can be flexibly adapted to the current network

conditions. In contrast, P does not allow this kind of

“fine-tuning” of timeout: there exists a maximal possible

timeout, such that i starts suspecting j as soon as timeout

exceeds. In order to minimize the probability of mistakes,

it is normally chosen sufficiently large, and the choice is

based on some a priori assumptions about current network

conditions. This might exclude some remote sites from

the group and violate the properties of the failure detector.

Thus, we can implement M* in a more effective manner,

and an algorithm that solves FTQME using M* exhibits

a smaller probability to violate the requirements of the

problem, than one using P, i.e., the use of M* provides

more resilience.

Acknowledgment

This research was financially supported by the Ministry

of Education, Science Technology (MEST) and Korea

Industrial Technology Foundation (KOTEF) through the

Human Resource Training Project for Regional

Innovation.

References

[1] Carole Delporte-Gallet and Hugues Fauconnier: The

weakest Failure Detector to Solve certain

Fundamental Problems in Distributed computing. In:

Proceedings of the ACM Symposium on Principles of

Distributed Computing, New York: ACM Press 2004

[2] D. Agrawal and A. E. Abbadi. An e.cient and

fault-tolerant solution for distributed mutual exclusion.

ACM Transactions on Computer Systems, 9(1):1 . 20,

February 1991.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The

weakest failure detector for solving consensus. Journal

of the ACM, 43(4):685.722, March 1996.

[4] T. D. Chandra and S. Toueg. Unreliable failure

detectors for reliable distributed systems. Journal of

the ACM, 43(2):225.267, March 1996.

[5] G. Chockler, D. Malkhi, and M. K. Reiter. Backo.

protocols for distributed mutual exclusion and

ordering. In Proceedings of the 21st International

Conference on Distributed Computing Systems

(ICDCS-21), April 2001.

[6] E. W. Dijkstra. Solution of a problem in concurrent

programming control. Communications of the ACM,

8(9):569, September 1965.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.

Impossibility of distributed consensus with one faulty

process. Journal of the ACM, 32(3):374.382, April

1985.

[8] E. Gafni and M. Mitzenmacher. Analysis of

timing-based mutual exclusion with random times.

SIAM Journal on Computing, 31(3):816.837, 2001.

Design of Fault-tolerant Mutual Exclusion Protocol in Asynchronous Distributed Systems

189

[9] V. Hadzilacos. A note on group mutual exclusion. In

20th ACM SIGACTSIGOPS Symposium on Principles

of Distributed Computing, August 2001.

[10] Y.-J. Joung. Asynchronous group mutual exclusion.

In 17th ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, pages 51.60,

June 1998.

[11] P . Keane and M. Moir. A simple local-spin group

mutual exclusion algorithm. IEEE Transactions on

Parallel and Distributed Systems, 12(7):673. 685, July

2001.

[12] L. Lamport. A new solution of Dijkstra’s concurrent

programming problem. Communications of the ACM,

17(8):453.455, August 1974.

[13] L. Lamport. The mutual exclusion problem. Parts

I&II. Journal of the ACM, 33(2):313.348, April 1986.

[14] S. Lodha and A. D. Kshemkalyan. A fair distributed

mutual exclusion algorithm. IEEE Transactions on

Parallel and Distributed Systems, 11(6):537. 549, June

2000. 24

[15] N. A. Lynch. Distributed Algorithms. Morgan

Kaufmann Publishers, 1996.

[16] M. Maekawa. A√N algorithm for mutual exclusion

in decentralized systems. ACM Transactions on

Computer Systems, 3(2):145.159, May 1985.

[17] D. Manivannan and M. Singhal. An e.cient

fault-tolerant mutual exclusion algorithm for

distributed systems. In Proceedings of the ISCA

International Conference on Parallel and Distributed

Computing Systems, pages 525.530, October 1994.

Sung-Hoon Park [Regular member]

• Feb. 1982. : B.S in economics

and statistics from Korea

university

• Dec. 1993. : M.S in Computer

science from Indiana University,

USA

• Dec. 2000. : Ph.D. in computer

science and engineering from

Korea university

• Sep. 2004. ~ current : Professor in Chungbuk

National University, Korea.

<Research Interests>

Distributed System, Mobile Computing and Theory of

Computation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

