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Abstract  This paper defines the quorum-based fault-tolerant mutual exclusion problem in a message-passing 

asynchronous system and determines a failure detector to solve the problem. This failure detector, which we call 

the modal failure detector star, and which we denote by M*, is strictly weaker than the perfect failure detector 

P but strictly stronger than the eventually perfect failure detector ◇P. The paper shows that at any environment, 

the problem is solvable with M*.

요  약  본 논문에서는 비동기적 분산시스템에서 고장 추적 장치를 이용한 상호배제의 문제를 서술하고 이러한 문제

를 해결하는 가장 약한 고장 추적 장치를 결정하고자 한다. 이를 위해서 M*라고 정의한 modal failure detector star 

고장 추적 장치를 정의하고 M*를 이용해서 상호배제 문제는 비동기적 분산 시스템에서 해결 가능함을 보인다. M*는 

perfect failure detector P보다 확실히 약하며  eventually perfect failure detector ◇P보다는 강한 고장추적 장치이다. 

본 논문에서는 어떤 환경 안에서 이러한 문제가 해결 가능함을 보인다. 
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1. Introduction

1.1 Background

We address the fault-tolerant quorum-based mutual 

exclusion problem, simply FTQME, in an asynchronous 

distributed system. In the system, the communication 

between a pair of processes is by a message-passing 

primitive, channels are reliable and processes can fail by 

crashing. In distributed systems, many applications such 

as replicated data management, directory management and 

distributed shared memory requires that a shared resource 

is allocated to a single process at a time. This is called 

the problem of mutual exclusion [5, 8, 9, 10, 11, 12, 17]. 

More precisely, the quorum-based mutual exclusion 

problem specified with two properties: 1) only one 

process can access a single, indivisible resource at a time, 

what is called mutual exclusion (ME) 2) The user 

accessing the resource is said to be in its critical section 

(CS) and if a correct process (i.e., a process that does not 

crash) wants to enter its critical section, then it eventually 

will be in its critical section, what is called progress 

property (PP), even if some process crashed while in the 

critical section [2,6]. 

The problem of mutual exclusion becomes much more 

complex in distributed systems (as compared to 

single-computer systems) due to the lack of both a shared 

memory and a common physical clock and because of 

unpredictable message delays. 
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Evidently, the problem cannot be solved 

deterministically in a crash-prone asynchronous system 

without any information about failures. There is no way 

to determine that a process in its CS is crashed or just 

slow. Clearly, no deterministic algorithm can guarantee 

fault-tolerant progress and mutual exclusion 

simultaneously. In this sense, the problem stems from the 

famous impossibility result that consensus cannot be 

solved deterministically in an asynchronous system that is 

subject to even a single crash failure [7].

1.2 Failure Detectors 

In this paper, we introduced a modal failure detector 

M* and showed that the mutual exclusion problem is 

solvable with it in the environment with majority correct 

processes. The concept of (unreliable) failure detectors 

was introduced by Chandra and Toueg [3,4], and they 

characterized failure detectors by two properties: 

completeness and accuracy. Based on the properties, they 

defined several failure detector classes: perfect failure 

detectors P, weak failure detectors W, eventually weak 

failure detectors ◊W and so on. In [3] and [4] they 

studied what is the "weakest" failure detector to solve 

consensus. They showed that the weakest failure detector 

to solve consensus with any number of faulty processes is 

Ω+S and the one with faulty processes bounded by ⌈n/2

⌉ (i.e., less than ⌈n/2⌉ faulty processes) is ♢W. After 

the work of [8], several studies followed. For example, 

the weakest failure detector for stable leader election is 

the perfect failure detector P [4], and the one for 

Terminating Reliable Broadcast is also P [1, 3]. 

Recently, as the closest one from our work, Guerraoui 

and Kouznetsov showed a failure detector class for mutual 

exclusion problems that is different from the above 

weakest failure detectors. The failure detector called the 

Trusting failure detector satisfies the three properties, i.e., 

strong completeness, eventual strong accuracy and trusting 

accuracy so that it can solve the mutual exclusion 

problem in asynchronous distributed systems with crash 

failure. And they used the bakery algorithm to solve the 

mutual exclusion problem with the trusting failure 

detector.

1.3 Contributions

How about the quorum-based mutual exclusion 

problem? More precisely, what is the weakest failure 

detector to solve the quorum-based mutual exclusion 

problem? The bakery algorithm is completely different 

from the quorum-based ME in which the order of getting 

the critical section is decided based on a ticket order. In 

contrast to the bakery algorithm, the quorum-based ME 

algorithm should receive the permissions from all 

members of a quorum to exclusively use the critical 

section.  

In general, quorum-based mutual exclusion algorithms 

assume that the system is either a failure-free model 

[13,14,16,19], or a synchronous model in which (1) if a 

process crash, it is eventually detected by every correct 

process and (2) no correct process is suspected before 

crash [13, 16]: with the conjunction of (1) and (2), the 

system is assumed to equipped with the capability of the 

perfect failure detector P [3]. In other words, the perfect 

failure detector P is sufficient to solve the fault-tolerant 

quorum-based mutual exclusion problem. But is P 

necessary? For the answer to the question, we present a 

modal failure detector star M*, that is a new failure 

detector we introduce here, which is strictly weaker than 

P (but strictly stronger than ◇P the eventually perfect 

failure detector of [3]). We show that the answer is “no” 

and we can solve the problem using the modal failure 

detector star M*. Roughly speaking, failure detector M* 

satisfies (1) eventual strong accuracy and (2) strong 

completeness together with (3) modal accuracy, i.e., 

initially, every process is suspected, after that, any process 

that is once confirmed to be correct is not suspected 

before crash. If M* suspects the confirmed process again, 

then the process has crashed. However, M* might suspect 

temporarily every correct process before confirming it’s 

alive as well as might not suspect temporarily a crashed 

process before confirming it’s crash. Intuitively, M* can 

thus make at least one mistake per every correct process 

and algorithms using M* are, in terms of a practical 

distributed system view, more useful than those using P. 

We here present the algorithm to show that M* is 

sufficient to solve fault tolerant quorum-based mutual 

exclusion and it is inspired by the well-known Grid-based 

algorithm of Maekawa [11,15-17]: a process that wishes 

to enter its CS first gets admissions from the one of 

quorums. M* guarantees that a crash of the process which 

has been confirmed at least once will be eventually 
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detected by every correct process in the system. 

We show that, in addition to mutual exclusion and 

progress, our algorithm guarantees also a fairness 

property, ensuring that any process which wants to get in 

a CS is eventually granted to access the CS 

(starvation-freedom property). We do not consider here 

probabilistic mutual exclusion algorithms [4,7]. 

1.4 Road Map

The rest of the paper is organized as follows. Section 

2 addresses motivations and related works and Section 3 

overviews the system model. Section 4 introduces them 

modal failure detector star M*. Section 5 shows that M* 

is sufficient to solve the problem, respectively. Section 6 

concludes the paper with some practical remarks.

 

2. Motivations and Related Works

Actually, the main difficulty in solving the mutual 

exclusion problem in presence of process crashes lies in 

the detection of crashes. As a way of getting around the 

impossibility of consensus, Chandra and Toug extended 

the asynchronous model of computation with unreliable 

failure detectors and showed in [4] that the FLP 

impossibility can be circumvented using failure detectors. 

More precisely, they have shown that consensus can be 

solved (deterministically) in an asynchronous system 

augmented with the failure detector ◊S (Eventually 

Strong) and the assumption of a majority of correct 

processes. Failure detector ◊S guarantees Strong 

Completeness, i.e., eventually, every process that crashes 

is permanently suspected by every process, and Eventual 

Weak Accuracy, i.e., eventually, some correct process is 

never suspected. Failure detector ◊S can however make 

an arbitrary number of mistakes, i.e., false suspicions.

A quorum-base mutual exclusion problem, simply 

QME, is an agreement problem so that it is impossible to 

solve in asynchronous distributed systems with crash 

failures. This stems from the FLP result which mentioning 

the consensus problem can’t be solved in asynchronous 

systems. Can we also circumvent the impossibility of 

solving QME using some failure detector? The answer is 

of course “yes”. The Grid-based algorithm of Maekawa 

[16] solves the QME problem with assuming that it has 

the capability of the failure detector P (Perfect) in 

asynchronous distributed systems. This failure detector 

ensures Strong Completeness (recalled above) and Strong 

Accuracy, i.e., no process is suspected before it crashes 

[2]. Failure detector P does never make any mistake and 

obviously provides more knowledge about failures than ♢

S. But it is stated in [7] that Failure detector ♢S cannot 

solve the ME problem, even if only one process may 

crash. This means that ME is strictly harder than 

consensus, i.e., ME requires more knowledge about 

failures than consensus. An interesting question is then 

“What is the weakest failure detector for solving the QME 

problem in asynchronous systems with unreliable failure 

detectors?” In this paper, as the answer to this question, 

we show that there is a failure detector that solves QME 

weaker than the Perfect Failure Detector. This means that 

the weakest failure detector for QME is not a Perfect 

Failure Detector P. 

3. The Model

We consider in this paper a crash-prone asynchronous 

message passing system model augmented with the failure 

detector abstraction [2]. 

 

3.1 The Fault-tolerant Quorum-based Mutual 

Exclusion Problem

We define here the fault-tolerant quorum-based mutual 

exclusion problem (from now on -FTQME) using the 

terminology and notations given in [6,13]. Let ∏ denote 

a nonempty set of n processes. We associate to every 

process i ∈ Π a user, ui that can require exclusive access 

to the critical section. The users can be thought of as 

application programs. As in [14], every process i ∈ Π 

and every user ui are modeled as state machines. A 

process i ∈ Π and the corresponding user ui interact 

using tryi, criti, exiti and remi actions. The input actions 

of process i (and outputs of ui) are the tryi action, 

indicating the wish of ui to enter its CS, and the exiti 

action, indicating the wish of ui to leave its critical 

section. The output actions of i (and inputs of ui) are the 

criti action, granting the access to its critical section, and 
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the remi action, which tells ui that it can continue its 

work out of its critical section. A sequence of tryi, criti, 

exiti and remi actions for the composition (ui, i) is called 

a well-formed execution if it is a prefix of the cyclically 

ordered sequence {tryi, criti, exiti, remi}. A user ui is 

called a well-formed user if it does not violate the cyclic 

order of actions tryi, criti, exiti, remi, ... A mutual 

exclusion algorithm defines trying and exit protocols for 

every process i. We say that the algorithm solves the 

FTQME problem if, under the assumption that every user 

is well-formed, any run of the algorithm satisfies the 

following properties:

Mutual exclusion: No two different processes are in 

their CS at the same time.

Starvation freedom: Every request for its CS is 

eventually granted. 

Fairness: Different requests must be granted in the 

order they are made.

Note that Mutual exclusion is a safety property while 

Starvation freedom is liveness properties. Let ∏ denote a 

nonempty set of n processes as defined in the previous 

section. A coterie C is a set of sets, where each set Q in 

C is called a quorum. The following conditions hold for 

quorums in a coterie C under ∏ [6]:  

∀Qi ∈ C : Qi ≠ ∅ ∧ Qi ⊆ U 

Minimality Property : No quorum is a subset of 

another quorum. ∀Qi, Qj∈C : Qi ≠ Qj:¬( Qi ⊆ Qj)

Intersection Property : Every two quorums intersect ∀

Qi,Qj ∈C : Qi∩ Qj ≠ ∅.

For example, C = {{a, b}, {b, c}} is a coterie under 

∏ = {a, b, c} and Qi = {a, b} is a quorum. The concept 

of intersecting quorum captures the essence of mutual 

exclusion in distributed systems. That is, process i 

executes its CS only after it has locked all the processes 

in a quorum Qj ∈C in exclusive mode. To do this, 

process i sends request messages to all the processes in 

Qj. On receipt of the request message, the process j of the 

quorum Qj immediately sends a reply message to i 

(indicating j has been locked by i) only if j is not locked 

by some other process at that time. The process i can 

access the CS only after receiving permission (i.e., reply 

messages) from all the processes in the quorum P. After 

having finished the CS execution, i sends release 

messages to all the processes in the quorum Qj to unlock 

them. Since any pair of quorums have at least one process 

in common (by the Intersection Property), mutual 

exclusion is guaranteed. The Minimality Property is not 

necessary for correctness, but it is useful for efficiency.

4. The Modal Failure Detector Star M*

Each module of failure detector M* outputs a subset of 

the range 2
∏

. Initially, every process is suspected. 

However, if any process is once confirmed to be correct 

by any correct process, then the confirmed process id is 

removed from the failure detector list of M*. If the 

confirmed process is suspected again, the suspected 

process id is inserted into the failure detector list of M*. 

The most important property of M*, denoted by model 

Accuracy, is that a process that was once confirmed to be 

correct is not suspected before crash. Let HM be any 

history of such a failure detector M*. Then HM(i,t) 

represents the set of processes that process i suspects at 

time t. For each failure pattern F, M(F) is defined by the 

set of all failure detector histories HM that satisfy the 

following properties:

· Strong Completeness: There is a time after which 

every process that crashes is permanently suspected by 

every correct process:

- ∀i,j ∈ ∏, ∀i ∈ correct(F), ∀j ∈ F(t), ∃ t’’:∀t’ 

> t’’, j ∈ H(i, t’).

· Eventual Strong Accuracy: There is a time after 

which every correct process is never suspected by any 

correct process. More precisely:

- ∀i,j ∈ ∏,∀i ∈ correct(F), ∃t:∀t’ > t, ∀j ∈ 

correct(F), j ∉ H(i, t’).

· Modal Accuracy: Initially, every process is suspected. 

After that, any process that is once confirmed to be 

correct is not suspected before crash. More precisely: - ∀

i,j ∈ ∏: j ∈ H(i,t0), t0 < t < t’, j ∉ H(i,t) ∧ j ∈ ∏ 

- F(t’) => j ∉ H(i, t’)

Note that model Accuracy does not require that failure 

detector M* keeps the Strong Accuracy property over 

every process all the time t. However, it only requires that 

failure detector M* never makes a mistake before crash 

about the process that was confirmed at least once to be 

correct. 

If process M* outputs some crashed processes, then 

M* accurately knows that they have crashed, since they 
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had already been confirmed to be correct before crash. 

However, concerning those processes that had never been 

confirmed, M* does not necessarily know whether they 

crashed (or which processes crashed).

5. Solving FTQME Problem with M*

We give in Figure 1 an algorithm solving FTQME 

using M* in any environment where at least one quorum 

is available. The algorithm uses the fact that eventual 

strong accuracy property of M*. More precisely, with 

such a property of M* and the assumption of at least one 

quorum being available, we can implement our algorithm 

of Figure 1. Note here that we don’t consider the dead 

lock situation where two or more processes concurrently 

trying to obtain permissions from each number of 

quorums but only get in infinitely waiting. In this 

algorithm, we assume that there is a mechanism to resolve 

the dead lock.

Var status: {rem,try,incs,wait}initially rem

Var my_token: initially true

Var my_token_holder: initially NULL

Var token :initiallyempty list

Var my_quorumi: initially empty

 

Periodically(t) do

    request M* for HM

 

1.   Upon received (trying,upper_layer)

2.   if not (status = try)then

3.   wait until ∃Qk : ∀j ∈Qk : j∉ HM

4.   statusi:=try

5.   send (ask_permit,i)to∀j ∈ Qk

6.   my_quorum:= Qk

 

7.  Upon received (ok_pemit,j)

8.    token:=token ∪ { j }

9.    If my_quorum=token then

10.      enter CS

 

11.   OnExitCS

12.     send(return_permit,i)to

          ∀j∈ my_quorum

          status:= rem

 

13.  Upon received (no_permit,j)

14.    send(return_permit,i) to ∀i ∈ token

15.    token: = ∅

16.    goto tryi

 

17.  Upon received (ask_permit,j)

18.    wait until j ∉ HM

19.    if my_token=true then

20.      send(ok_permit,j)

21.      my_token_holder:=j

22.      my_token:=false

23.         else

24.      send(no_permit,j)

 

25.  Upon received HM fromMi

26.    if (my_token = false

               ∧my_token_holder∈HM) then

27.            my_token:= true

 

28.  Upon received (return_permit,j)

29.    my_token:=true

30.    my_token_holder:=NULL

[Figure 1] FTQME algorithm using M
*
 : process i.

We give in Figure 1 an algorithm solving FTQME 

using M* in any environment E with any number of 

correct processes ( f < n ). 

Our algorithm of Figure 1 assumes:

-  Each process i has access to the output of its modal 

failure detector module Mi*;

-  At least one quorum is available;

-  Each process i is well-formed;

- A dead lock resolving mechanism is installed;

In our algorithm of Figure 1, each process i has the 

following variables:

1. A variable status, initially rem, represents one of the 

following states {rem,try,incs,wait};

2. A boolean my_tokeni, initially true, indicating 

whether i has the its token;

3. A variable my_token_holderi, initially NULL, which 

denotes the token holder when i send its token to 

other node;
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4. A list token_listi, initially empty, keeping the tokens 

that i has received from each member of a quorum.

Description of [Line 1-6] in Figure 1; the idea of our 

algorithm is inspired by the well-known Quorum-based 

ME algorithm of Maekawa [11, 12]. That is, the processes 

that wish to enter their CS first wait for a quorum whose 

members are all alive based on the information HM

from its failure detector M*. Those processes 

eventually find out the quorum by the eventual strong 

accuracy property of M* in line 3 of Figure 1 and then 

sets its status to “try”, meaning that it is try to get in CS. 

It sets the variable my_quorum with Qk and send the 

message “(ask_permit,i)” to all nodes in the quorum.

Description of [Line 7-8] in Figure 1; the candidate 

asking for a permission to proceed from every process of 

one quorum does not take steps until the all permissions 

are received from the quorum. But it eventually received 

all permissions from a quorum and enter the CS due to 

the assumption of installed dead lock resolving 

mechanism in the system and it get in CS. 

Description of [11-12] in Figure 1; On exit from the 

CS, the node sends “return_permit” to the every member 

of the quorum from which it received permissions. It set 

its status with “rem”  meaning that it is in normal mode. 

Notice that no candidate i can be served if other process 

j is accessing the resource. That is because while other 

process j is serving but not yet releasing the resource, the 

candidate i can not obtain all permission from the quorum 

(line 13 in Figure 1).

Description of [13-16] in Figure 1; If the candidate 

received the message “no_permit” from the a node of 

quorum, it returns all received permissions from the 

quorum to every member of the quorum and after that it 

try again.

Description of [17-24] in Figure 1; The node i, 

received “ask_permit” from node j, first checks that j is 

alive and if it is alive then the node i sends its 

“ok_permit” to the node i when it has its token. But if the 

node i has no token, it send the message “no_permit” to 

the node j. 

Description of [25-27] in Figure 1; When the node i 

received the failure detector history HM from M*, if it 

knows that a node holding its token died, it regenerates 

its token again.

Description of [28-30] in Figure 1; Upon received 

“return_permit” from node j, node i sets its “my_token” 

with true meaning that it has its token.

Now we prove the correctness of the algorithm of 

Figure 1 in terms of two properties : mutual exclusion 

and progress . Let R be an arbitrary run of the algorithm 

for some failure pattern F ∈ E (f < n).  Therefore we 

prove Lemma 1 and 2 for R respectively.

Lemma 1. ( mutual exclusion property) No two 

different processes are in their CSs at the same time.

Proof: By contradiction, assume that i and j (i≠j) are 

in their CSs at time t’. According to the line 7-9 of the 

algorithm 1, no process enters its CS before receiving 

permissions from a quorum. Thus i must have received all 

permissions from each member of a quorum and j must 

have received all permissions from each member of a 

quorum before t’. 

Without loss of generality, assume the event that i 

received all permission from a quorum precedes the event 

that j received all permission from other quorum. That is, 

at some time t’’ < t’, j received all permissions from a 

quorum while i is entering CS but before exits from CS. 

That means that at some time t’’ < t’, j passed the 

(my_quorum = token) clause in line 9 while i is still in 

CS. Thus, one of the following events occurred before t’’ 

at every member of a quorum: 

(1) Every member of quorum j has a token and sends 

(Ok_Permit, j ): by the algorithm of Figure 1. But by 

intersection property of quorum, i is in the CS at t’ > t’’ 

and at least one member of the quorum does not have a 

token: a contradiction.

(2) Every member of quorum j received HM from Mj 

and i∈ HM by the algorithm of Figure 1, at some time 

t’’ < t’. Thus, we can assume that the following is true: 

i ∉ HM at time t’and i ∈ HM at time t’’. By the model 

accuracy property of M, i is crashed at t’’. But it is in 

the CS at t’ > t’’ : a contradiction. Hence, mutual 

exclusion is guaranteed.

Lemma 2.  If a correct process request for the CS, then 

at some time later the process eventually enters in its CS.

Proof: Assume that a correct process i volunteers at 

time t’, and no correct process is ever in its CS after t’. 

According to the algorithm, after t’, process i never 

reaches line 9 of the algorithm. In other words, i is 

blocked at some wait clause. The first wait clause (line 3 
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in Figure 1) is not able to block the process, due to the 

modal accuracy (1) property of M* and the fact that (n>f) 

processes are correct. Thus, eventually, statusi = try, and 

wait clause in line 5-6 in Figure 1 cannot block the 

process neither. Thus, i issues send (ask_permit, i). The 

second received clause (more precisely, the statement in 

line 17 in Figure 1) is not blocking neither, because of 

the guarantee that any send message is eventually 

delivered by every correct process. Thus, i is blocked in 

the third clause (line 7-8 in Figure 1) while processing 

some token := token ∪ { j }. We show that if a correct 

process i is blocked while processing some token from j, 

then process j is blocked and it never sends (ok_permit, 

j) nor (no_permit, j). But j is never blocked since it is 

always in one of two states, i.e., my_token is true or not. 

So contradiction. 

 

Theorem 1: The algorithm of Figure 1 solves FTQME 

using M*, in any environment E with f < n/2, combining 

with two lemmas 1 and 2.

6. Concluding Remark

Is it beneficial in practice to use a mutual exclusion 

algorithm based on M*, instead of a traditional algorithm 

assuming P? The answer is “yes”. Indeed, if we translate 

the very fact of not trusting a correct process into a 

mistake, then M* clearly tolerates mistakes whereas P 

does not. More precisely, M* is allowed to make up to 

n2 mistakes (up to n mistakes for each module Mi, i∈ 

Π). As a result, M*’s implementation has certain 

advantages comparing to P’s (given synchrony 

assumptions). For example, in a possible implementation 

of M*, every process i can gradually increase the timeout 

corresponding to a heart-beat message sent to a process j 

until a response from j is received. Thus, every such 

timeout can be flexibly adapted to the current network 

conditions. In contrast, P does not allow this kind of 

“fine-tuning” of timeout: there exists a maximal possible 

timeout, such that i starts suspecting j as soon as timeout 

exceeds. In order to minimize the probability of mistakes, 

it is normally chosen sufficiently large, and the choice is 

based on some a priori assumptions about current network 

conditions. This might exclude some remote sites from 

the group and violate the properties of the failure detector. 

Thus, we can implement M* in a more effective manner, 

and an algorithm that solves FTQME using M* exhibits 

a smaller probability to violate the requirements of the 

problem, than one using P, i.e., the use of M* provides 

more resilience. 
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