• 제목/요약/키워드: Fault protection

검색결과 623건 처리시간 0.039초

교류 급전시스템 보호를 위한 전차선로 고장특성 분석 (Analysis of fault characteristics in Catenary system for protection of AC feeding system)

  • 정호성;박영;김주락;권삼영;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1089-1090
    • /
    • 2006
  • This paper analyzes impedance convergence characteristics and harmonics of electric locomotives operation and fault condition. To simulate the various fault and operation condition, AT feeding system and various locomotives are modeled using PSCAD/EMTDC. Analysis shows that impedance are converged into protection area in the case of short fault between catenary and rail or catenary and feeder line but in the case of disconnection fault, impedance is rater bigger so protective relay can't detect the fault. Therefore more analysis of overload and high impedance fault caused disconnection fault is needed.

  • PDF

에이전트 환경에서의 1선지락 거리계전 알고리즘 (Agent-Based Distance Relaying Algorithm for Phase-to-Ground Faults)

  • 현승호;진보건;이승재
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1885-1891
    • /
    • 2007
  • This paper presents a distance relaying algorithm for phase-to-ground faults in transmission lines under Multi-Agent protection environment. In normal condition, a distance relay agent stores the latest states, e.g., voltage of source side, voltage of the opposite side and the loading conditions, etc., through communication between the agents. Once a fault occurs, the relay calculates the fault location using the knowledge about the states just before the fault happens. This stand-alone operation is to improve reliability under the fault condition at which the accuracy or time required for communication may not be guaranteed. The mathematical expression of fault location is derived through loop analysis, before hand, in the manner that both fault current from the opposite end and fault resistance are included implicitly so that their effects are minimized. The suggested algorithm is applied to a typical transmission system with two power sources on both ends to show its effectiveness.

풍력발전단지의 계통연계 운전이 배전선 보호계전에 미치는 영향 (Influence of the Interconnected Wind farm on Protection for Distribution Networks)

  • 장성일;김광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권3호
    • /
    • pp.151-157
    • /
    • 2003
  • Wind farm interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with wind fm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may be difficult to detect the fault happened in the distribution network connected with wind generator This paper describes the effect of the interconnected wind turbine generators on protective relaying of distribution power lines and detection of the fault occurred in a power line network. Simulation results shows that the current level of fault happened in the power line with wind farm depends on the fault impedance, the fault location. the output of wind farm. and the load condition of distribution network.

Validation of Some Protection Guidelines for Neighboring Pipelines against Fault Currents from Power Transmission Tower

  • Lee, Seong-Min;Song, Hong-Seok;Kim, Young Geun
    • Corrosion Science and Technology
    • /
    • 제6권2호
    • /
    • pp.77-81
    • /
    • 2007
  • Fault current can be discharged from power transmission tower due to lightning or inadvertent contact of crane, etc. Pipelines in proximity to either the source of the ground fault or the substation grounding grid may provide convenient conductive path for the fault current to travel. Inappropriate measures to the neighboring pipelines against the fault current may cause severe damages to the pipes such as coating breakdown, arc burn, puncture, loss in wall thickness, or brittle heat-affected zone. Like inductive and conductive AC coupling, steadily induced fault current right after the coating breakdown can lead to corrosion of the pipeline. In this work, some protection guidelines against fault currents used in the field have been validated through the simulation and analytical method.

EMTP-RV를 이용한 변전소 모선 방식과 보호협조 기초 논리 설계 방법론에 대한 연구 (Design Methodology of the Bus Configuration and Protection Coordination Basic Logics of Power Substation Using EMTP-RV)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1129-1138
    • /
    • 2019
  • 변전소는 변전설비들이 제한된 장소에 집중되어 구조적으로 복잡하기 때문에 송전선로나 배전선로 상에서 고장발생 시 고장파급효과를 최소화하기 위한 보호협조 시스템을 설계하기가 쉽지 않다. 본 연구에서는 변전소 전력공급 신뢰성에 핵심적인 영향을 미치는 모선 방식과 보호협조 기초논리를 분석하였으며 EMTP-RV 기반으로 변전소 내부 및 외부 고장을 정확하게 검출하기 위한 변전소 보호협조 논리를 모델링하였다. 변전소 보호협조 기본 논리로서 변전소 내부 고장 검출을 위한 비율차동 보호계전 논리와 외부고장을 추론하기 위한 과부하 보호계전 논리가 모델링되었다. 끝으로, EMTP-RV를 이용하여 개발된 보호협조 논리 모델링을 기반으로 154kV 변전소를 모델링한 후, 수개의 고장모의를 통해 EMTP-RV 모델링 결과의 유효성을 확인하였다.

풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘 (A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms)

  • 권영진;강상희
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

디지털 원자로보호계통 불가용도 평가 (An Unavailability Evaluation for a Digital Reactor Protection System)

  • 이동영;최종균;김지영;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.81-83
    • /
    • 2005
  • The Reactor Protection System (RPS) is a very important system in a nuclear power plant because the system shuts down the reactor to maintain the reactor core integrity and the reactor coolant system pressure boundary if the plant conditions approach the specified safety limits. This paper describes the unavailability assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system. and applied to the reactor protection system being developed in Korea.

  • PDF

The Effect Assessment Method of Control and Protection Systems on Transient Stability of Power Systems

  • Miki, Tetsushi;Sugino, Ryuzaburou;Kono, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.736-740
    • /
    • 2004
  • In order to overcome the problems of simulation methods, the power system transient stability assessment method using critical fault clearing time functions has been developed. Using the above method, this paper has developed the new method which can assess accurately and efficiently the effects of control and protection systems on transient stability which is the most important characteristic to assess in power systems. At first, critical fault clearing time functions CCT(W:load) are defined by taking notice of the fact that transient stability is mainly controlled by fault clearing time and load. Next, the method to be enable to assess accurately and efficiently the effects of control and protection systems on transient stability has been newly developed by using the above functions. Finally, it has been applied to the effect assessment in the occurrence of a three-phase fault in a model power system. Results of application have been clarified its effectiveness.

  • PDF

저압직류 접지시스템의 지락경로 흐름 분석에 따른 감전 보호기법 (Protection Techniques Against Electric Shock in Low Voltage DC Grounding Systems Depending on the Analysis of Earth Fault Current Paths)

  • 김동우;임용배;이상익;최명일;문현욱
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.232-238
    • /
    • 2016
  • This paper presents protection techniques against electric shock in low voltage DC(direct current) grounding systems depending on the analysis of earth fault current paths. Firstly, the comparison between alternating current and direct current on human was conducted, and current threshold values for each current path and for long duration were analyzed. Secondly, the analyses of the earth fault current flows were performed depending on the grounding types and earth fault conditions. Lastly, based on these analyses, adequate protection measures of electric shock depending on low voltage DC grounding types were provided.

Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

  • Zheng, Taiying;Cha, Seung-Tae;Kim, Yeon-Hee;Crossley, Peter A.;Lee, Sang Ho;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1029-1039
    • /
    • 2013
  • To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negative-sequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults requiring non-operation response from those requiring instantaneous or delayed operation responses. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between instantaneous operation and delayed operation based on the magnitude of the positive-sequence fault component. Various fault scenarios involving changes in position and type of fault and faulted phases are used to verify the performance of the relay. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. Results indicate that the relay can successfully distinguish the need for instantaneous, delayed, or non-operation.