• 제목/요약/키워드: Fault positions

검색결과 39건 처리시간 0.029초

두 트리거 전류를 갖는 자속구속형 초전도한류기의 고장전류 크기에 따른 초전도 모듈의 전력부담 분석 (Analysis on Power Burden of HTSC Module due to Fault Current's Amplitude of a Flux-Lock Type SFCL with Two Triggering Currents)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제29권7호
    • /
    • pp.424-428
    • /
    • 2016
  • In this paper, the power burden of High-TC superconducting (HTSC) module comprising the flux-lock type superconducting fault current limiter (SFCL) with two triggering currents during the fault period was analyzed. The short-circuit tests for the simulated power system with the SFCL in the different fault positions, which were expected to affect the amplitude of the fault current, were carried out. Through the comparative analysis on the power burden of the HTSC modules, the proposed flux-lock type SFCL was confirmed to be effective to divide into two power burdens according to the amplitude of the fault currents.

The FRTU-Based Intelligent Fault Location Determination Strategy in Ubiquitous Based Distribution Systems

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.192-198
    • /
    • 2008
  • This paper proposes a FRTU-based intelligent fault distance determination strategy in which each FRTU is able to avoid multiple estimations and reduce the level of estimation error by utilizing heuristic rules driven by voltage and current information collected by 1:1 communication with other FRTUs from the same zone in a ubiquitous-based distribution system. In the proposed method, each FRTU, at first, determines a fault zone and a fault path on the faulted zone based on the proposed heuristic rules which use its current data and the voltage data of its neighboring FRTUs as input data. Next, it determines the fault distance from its position based on the fault current estimated from the current data of the neighboring FRTUs. Finally, in order to prove the effectiveness of the proposed method, the diverse fault cases are simulated in several positions of the typical distribution system using the EMTP.

Design of Reconfigurable Flight Controller using Sliding Mode Control - Actuator Fault

  • dong ho Shin;Kim, Youdan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.40.2-40
    • /
    • 2002
  • This paper presents the reconfigurable flight controller in the presence of jammed actuator fault using the adaptive sliding mode control scheme. It is developed under the assumption that the control surface fault cannot be detected and the positions of stuck control surfaces are unknown. It is well known that sliding mode controller shows good performance for the systems with various uncertainties. None-operating stuck actuator makes the system behave like bias which degrades the system performance and sometimes destabilizes the system. Therefore, the bias term generated by actuator faults has to be compensated by the control system. To the objective, we adopt the adaptive sliding mode cont...

  • PDF

Protection for a Wind Turbine Generator in a Large Wind Farm

  • Zheng, Tai-Ying;Kim, Yeon-Hee;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.466-473
    • /
    • 2011
  • This paper proposes a protection algorithm for a wind turbine generator (WTG) in a large wind farm. To minimize the outage section, a protection relay for a WTG should operate instantaneously for an internal fault or a connected feeder fault, whereas the relay should not operate for an internal fault of another WTG connected to the same feeder or an adjacent feeder fault. In addition, the relay should operate with a delay for an inter-tie fault or a grid fault. An internal fault of another WTG connected to the same feeder or an adjacent feeder fault, where the relay should not operate, is determined based on the magnitude of the positive sequence current. To differentiate an internal fault or a connected feeder fault from an inter-tie fault or a grid fault, the phase angle of the negative sequence current is used to distinguish a fault type. The magnitude of the positive sequence current is then used to decide either instantaneous operation or delayed operation. The performance of the proposed algorithm is verified under various fault conditions with EMTP-RV generated data. The results indicate that the algorithm can successfully distinguish instantaneous operation, delayed operation, or non-operation depending on fault positions and types.

에너지 안정여유도를 이용한 사족 보행 로봇의 내고장성 걸음새 (Designing Fault-Tolerant Gaits for Quadruped Robots Using Energy Stability Margins)

  • 양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권7호
    • /
    • pp.319-326
    • /
    • 2006
  • This paper proposes a novel fault-tolerant gait for Quadruped robots using energy stability margins. The previously developed fault-tolerant gaits for quadruped robots have a drawback of having marginal stability margin, which may lead to tumbling. In the process of tumbling, the potential energy of the center of gravity goes through a maximum. The larger the difference between the potential energy of the center of gravity of the initial position and that of this maximum, the less the robot tumbles. Hence this difference of potential energy, dubbed as Energy Stability Margin (ESM), can be regarded as the stability margin. In this paper, a novel fault-tolerant gait is presented which gives positive ESM to a quadruped robot suffering from a locked joint failure. Positive ESM is obtained by adjusting foot positions between leg swing sequences. The advantage of the proposed fault-tolerant gait is demonstrated in a case study where a quadruped robot with a failed leg walks on a even slope.

Diagnosis of Processing Equipment Using Neural Network Recognition of Radio Frequency Impedance Matching

  • Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.157.1-157
    • /
    • 2001
  • A new methodology is presented to diagnose faults in equipment plasma. This is accomplished by using neural networks as a pattern recognizer of radio frequency(rf) impedance match data. Using a realtime match monitor system, the match data were collected. The monitor system consisted mainly of a multifunction board and a signal flow diagram coded by Visual Designer. Plasma anomaly was effectively represented by electrical match positions. Twenty sets of fault-symptom patterns were experimentally simulated with experimental variations in process factors, which include rf source power, pressure, Ar and O$_2$ flow rates. As the inputs to neural networks, two means and standard deviations of positions were used ...

  • PDF

Load Flow Calculation and Short Circuit Fault Transients in AC Electrified Railways

  • Hosseini, Seyed Hossein;Shahnia, Farhad
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2203-2206
    • /
    • 2005
  • A load flow and short circuit fault simulation of AC electrified railway distribution systems is presented with DIgSILENT PowerFactory software. Load flow of electrified railways distribution system with concerning multi train lines and dynamic characteristics of train load is studied for different time laps. The dynamic characteristics of train load in starting and braking conditions with different starting and stopping times and its moving positions makes the load flow complicated so there is a great need in studying the effects of electrified railways on load flow. Short circuit fault transients is also studied and simulated for both power system or traction distribution system and their effects on the operation of the train sets is investigated.

  • PDF

Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석 (Performance Assessment of GBAS Ephemeris Monitor for Wide Faults)

  • 송준솔
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Efficient Fault Detection Method for a Degaussing Coil System Based on an Analytical Sensitivity Formula

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.135-141
    • /
    • 2013
  • This paper proposes an efficient fault detection method for onboard degaussing coils which are installed to minimize underwater magnetic fields due to the ferromagnetic hull. To achieve this, the method basically uses field signals measured at specific magnetic treatment facilities instead of time-consuming numerical field solutions in a three-dimensional analysis space. In addition, an analytical design sensitivity formula and the linear property of degaussing coil fields is being exploited for detecting fault coil positions and assessing individual degaussing coil currents. Such peculiar features make it possible to yield fast and accurate results on the fault detection of degaussing coils. For foreseeable fault conditions, the proposed method is tested with a model ship equipped with 20 degaussing coils.

Collapse simulations of a long span transmission tower-line system subjected to near-fault ground motions

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Qiu, Canxing
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.211-220
    • /
    • 2017
  • Observations from past strong earthquakes revealed that near-fault ground motions could lead to the failure, or even collapse of electricity transmission towers which are vital components of an overhead electric power delivery system. For assessing the performance and robustness, a high-fidelity three-dimension finite element model of a long span transmission tower-line system is established with the consideration of geometric nonlinearity and material nonlinearity. In the numerical model, the Tian-Ma-Qu material model is utilized to capture the nonlinear behaviours of structural members, and the cumulative damage D is defined as an index to identify the failure of members. Consequently, incremental dynamic analyses (IDAs) are conducted to study the collapse fragility, damage positions, collapse margin ratio (CMR) and dynamic robustness of the transmission towers by using twenty near-fault ground motions selected from PEER. Based on the bending and shear deformation of structures, the collapse mechanism of electricity transmission towers subjected to Chi-Chi earthquake is investigated. This research can serve as a reference for the performance of large span transmission tower line system subjected to near-fault ground motions.