• Title/Summary/Keyword: Fault location error

Search Result 46, Processing Time 0.019 seconds

Enhanced Fault Location Algorithm for Short Faults of Transmission Line (1회선 송전선로 단락사고의 개선된 고장점 표정기법)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.955-961
    • /
    • 2016
  • Fault location estimation is an important element for rapid recovery of power system when fault occur in transmission line. In order to calculate line impedance, most of fault location algorithm uses by measuring relaying waveform using DFT. So if there is a calculation error due to the influence of phasor by DC offset component, due to large vibration by line impedance computation, abnormal and non-operation of fault locator can be issue. It is very important to implement the robust fault location algorithm that is not affected by DC offset component. This paper describes an enhanced fault location algorithm based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any erstwhile information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced fault location algorithm uses DFT filter as well as the proposed DC offset filter. The behavior of the proposed fault location algorithm using off-line simulation has been verified by data about several fault conditions generated by the ATP simulation program.

A study on the prediction method of the real fault distance using probability to the relay data of transmission line fault location (송전선로 거리표정치에 대한 실 고장거리의 확률적 예측방안)

  • Lee, Y.H.;Back, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.10-11
    • /
    • 2006
  • The fault location is obtained from the distance relay that detects the fault of the transmission line. In this time, transmission line crews track down the fault location and the reasons. However, because of having error at the fault location of the distance relay, there is a discordance between real and obtained fault location. As this reason, the inspection time for finding fault location can be longer. In this paper, we proposed the statistical (regression) analysis method based on each type of relay's the historical fault location data and the real fault distance data to improve the problems. With finding the regression equation based on the regression analysis, and putting the relay fault location into that equation, the real fault distance is calculated. As a result of the Prediction fault location, the inspection time of transmission line can be reduced.

  • PDF

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

A Study on Advanced Fault Locating for Short Fault of a Double Circuit Transmission Line (병행 2회선 송전선로의 선간단락시 고장점 표정의 개선에 관한 연구)

  • Park, Yu-Yeong;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Fault locating is an important element to minimize the damage of power system. The computation error of fault locator may occur by the influence of the DC offset component during phasor extraction. In order to minimize the bad effects of DC offset component, this paper presents an improved fault location algorithm based on a DC offset removal filter for short fault in a double circuit transmission line. We have modeled a 154kV double circuit transmission line by the ATP software to demonstrate the effectiveness of the proposed fault locating algorithm. The line to line short faults were simulated and then collected simulation data was used. It can be seen that the error rate of fault locating estimation by the proposed algorithm decreases than the error rate of fault locating estimation by conventional algorithm.

Fault Location Estimation Algorithm of the parallel transmission lines using a variable data window method (가변 데이터 윈도우 기법을 이용한 병행 2회선 송전선 고장점 추정 알고리즘)

  • Jung, Ho-Sung;Yoon, Chang-Dae;Lee, Seung-Youn;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.266-268
    • /
    • 2003
  • This paper proposes the Fault Location Estimation Algorithm in the parallel transmission lines. These algorithm uses a variable data window method based on least square error method to estimate fault impedance quickly. And it selects the optimal equation according to the operation situation and usable fault data for minimizing the fault estimation error effected by the zero sequence mutual coupling. After simulation result, we can see that these algorithm estimates fault location more rapidly and exactly.

  • PDF

Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement (자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발)

  • Kim, Jae-Jin;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Analysis of the operation of Fault Locator in aspect of Line Constants by unifying Protect Wires (보호선 통합에 따른 선로정수 측면의 고장점 표정장치 동작에 관한 해석)

  • Lee, H.M.;Chang, S.H.;Han, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.275-277
    • /
    • 2004
  • when a fault occurs, we need the fault locator to find out the location of the fault quickly. The fault locator can find out the exact location of the fault through the line constants of the catenary system. If the configuration of the catenary system is modified, the line constants is also changed. Therefore, this paper analyzes the error of the operation of the fault locator by the simulation.

  • PDF

Fault Location Algorithm in a Two-ended Sources Transmission Line (양전원 송전선로의 고장점 표정 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • In order to service restoration and enhance power system reliability, a number of impedance based fault location algorithms have been developed for fault locating in a transmission line. This paper presents an advanced impedance-based fault location algorithms in a two-ended sources transmission line to reduce the DC offset error effects. This fault location algorithm uses of the GPS time synchronized voltage and current signals from the local and remote terminal. The algorithm uses an advanced DC offset removal filter. A series of test results using ATPdraw simulation data show the performance effectiveness of the proposed algorithm. The proposed algorithm is valid for a two-end sources transmission network.

Diagnosis of Poor Contact Fault in the Power Cable Using SSTDR (SSTDR을 이용한 케이블의 접촉 불량 고장 진단)

  • Kim, Taek-Hee;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1442-1449
    • /
    • 2016
  • This paper proposes a diagnosis to detecting poor contact fault and fault location. Electrical fire by poor contact fault of power cable occupied a large proportion in the total electrical installations. The proposed method has an object to prevent electrical fault in advance. But detecting poor contact fault is difficult to detect fault type and fault location by using conventional reflectometry due to faults generated intermittently and repeatedly on the time change. Therefore, in this paper poor contact fault and fault conditions were defined. System generating poor contact fault produced for the experimental setup. SSTDR and algorithm of reference signal elimination heighten performance detecting poor contact fault on live power cable. The diagnosis methods of signal process and analysis of reflected signal was proposed for detecting poor contact fault and fault location. The poor contact fault and location had been detected through proposed diagnosis methods. The fault location and error rate of detection were verified detecting accuracy by experiment results.

A Fault Location Algorithm for a Transmission Line Using Travelling Waves (진행파를 이용한 송전선로의 고장점 표정 알고리즘)

  • Kang Sang-Hee;Kim Jin-Han
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.542-549
    • /
    • 2004
  • The conventional fault location algorithms based on the travelling waves have an inherent problem. In cases of the close-up faults occurring near the relaying point and of the faults having zero degree inception angle of voltage signals, the conventional algorithms can not estimate an accurate fault distance. It is because the shapes of travelling waves are near sinusoidal in those cases. A new method solving this problem is presented in this paper. An FIR(Finite Impulse response) filter which makes high frequency components prominent and makes the power frequency component and dc-offset attenuated is used. With this method, the cross-correlation peak is to be very clear when a close-up fault or a fault having near zero-degree inception angle occurs. The cross-correlation peaks can be clearly distinguished and accurate fault location is practically possible consequently. A series of simulation studies using EMTP(Electromagnetic Transients Program) show that the proposed algorithm can calculate an accurate fault distance having maximum 2% or less error.