• Title/Summary/Keyword: Fault fracture zone

Search Result 71, Processing Time 0.024 seconds

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

Studies on Mineral Composition of Fault Clay in Quaternary Ipsil Fault: High Resolution Powder Diffraction Analysis (제4기 입실 단층 파쇄대에서 나타나는 단층점토의 산출상태에 따른 광물조성 연구: 고해상도분말회절 분석을 중심으로)

  • Park, Sung-Min;Kang, Han;Jang, Yun-Deuk;Im, Chang-Bock;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.83-89
    • /
    • 2007
  • XRD, HRPD and SEM were used for mineralogical characterization of fault clay in fracture zone from Ipsil. Variations of color in fault clay exhibit significant mineral composition difference. Fault clays from Ipsil are composed mainly of smectite, laumontite, and quartz. Laumontite, a distinct fault clay in Ipsil fault, might be resulted from alteration of bed rock in fracture zone based on the result that no laumontite was found near fault rock. Fault clays from Ipsil are composed mainly of smectite.

Relation between Groundwater Inflow into the Waterway Tunnel and Hydrogeological Characteristics in Hyeonseo-myeon, Cheongsong-gun, Korea (청송군 현서면 일대 도수로터널내 지하수 유입량과 수리지질 특성의 관련성)

  • 박재현;함세영;성익환;이병대;정재열
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • The waterway tunnel zone (length 1,484m) in the Hyeonseo-myeon area that is a part of Yeongcheon dam waterway tunnel has been studied to characterize the relationship between groundwater inflow into the waterway tunnel and hydrogeologic characteristics. The effects of sandstone thickness in the tunnel section. fracture density, fracture aperture and spacing, fault zone width and hydraulic conductivity on the early inflow (inflow prior to the lining and grouting) are investigated. The relationship between fracture density and hydraulic conductivity is also considered. The result of the study suggests that fault zone width has the greatest effect on groundwater inflow into the tunnel, and sandstone thickness, hydraulic conductivity and fracture density in order shows an influence on the inflow.

  • PDF

A Study on the Structure of the Yangsan Fault In the southern part of Kyeongju (경주 남부지역의 양산단층의 구조에 관한 연구)

  • Kim, Yeonghwa;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.20 no.4
    • /
    • pp.247-260
    • /
    • 1987
  • As a part of study on the structure of the Yangsan Fault, geological and VLF EM studies have been made in the fault area approximately between Kyeongju and Eonyang. The result provides comparatively clear information on the trace of the fault and extent of fracture zone as well as the structural characteristics of the Yangsan Fault area. The location of fault trace identified from this VLF EM study coincides well in general with that expected from geological information of the area. And the extent of fault fracture zone turn out to be characterized by U shaped low resistivity zone whose width increases from north to south.

  • PDF

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

Electrical Resistivity Surveys in Yangsan Fault Area near Kyongju (경주 부근 양산단층 지역에서의 전기비저항 탐사)

  • Lee, Gi Hwa;Han, Won Seok
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.259-268
    • /
    • 1999
  • Electrical resistivity surveys were conducted in the areas between Buji-ri and Seoak-dong, and between Nawon-ri and Yangdong-ri, Kyongju in order to investigate the geoelectric structure of the nothren part of the Yangsan Fault. In the area between Buji-ri and Seoak-dong south of Kyongju, the fracture zone east of the inferred fault develops more deeply, without significant north-south variation in depth, than west. In the area between Nawon-ri and Yangdong-ri north of Kyongju, the fault zone seems to be developed along the Hyungsan-river, and the resistivity structure west of the river is more affected by the fracture zone than east. Interpreted section of dipole-dipole survey conducted in Homyung-ri shows vertical contact of the Yangsan Fault. It appears that the boundary between the northern and central segment of the Yangsan Fault is located in the north of study areas since there is no significant variation in electrical resistivity structure near Kyongju.

  • PDF

A Study on Flow Variation with Geometrical Characteristics of Fault Zones Using Three-dimensional Discrete Fracture Network (3차원 이산 균열망 모형을 이용한 단층지역의 기하학적 특성에 따른 흐름 변화에 관한 연구)

  • Jeong, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.326-326
    • /
    • 2016
  • The fault can be defined, in a geological context, as a rupture plane showing a significant displacement generated in the case that the local tectonic stress exceeds a threshold of rupture along a particular plane in a rock mass. The hydrogeological properties of this fault can be varied with the spatial distribution and the connectivity of void spaces in a fault. When the formation of fault includes the process of the creation and the destruction of void spaces, a complex relation between the displacement along the fault and the variation of void spaces. In this study, the variation of flow with the geometrical characteristics of the fault is simulated and analyzed by using the three-dimensional discrete fracture network model. Three different geometrical characteristics of the faults are considered in this study: 1) simple hydraulic conductive plane, 2) damaged zone, and 3) relay structure of faults.

  • PDF

Geochemical Approach to Define the Fracture Bone Affected by the Ubo Fault at the Northern Part of the Hwabuk Dam (화북댐 상류지역을 통과하는 우보단층 파쇄대 영향분석을 위한 지화학적 접근)

  • Kwon Yong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.191-200
    • /
    • 2004
  • The Ubo fault Bone, which cross over the northwestern to southeastern direction at the Hwabuk damsite in Hakseongri, Gunwigun, Gyeongsangbukdo Province, has length about 20km. The Ubo fault zone in this area is segmented to several small faults and makes a gentle slope and hill along the right side of the drainage in the Hwabuk dam. In the storage area of Hwabuk dam, 2 pairs of faults occur and the width of fracture zones are about 2m. To define the fracture Bone using the geochemical data, the samples were collected at 0.5m, 1m, 2m, 4m, 8m, 16m and 32m apart from the center of the main fracture Bone toward north and south, respectively, and analyzed for major elements and mineral content Approaching the fracture Bone, Fe$_2$O$_3$, MgO, K$_2$O, quartz, muscovite and chlorite are increasing and Na$_2$O, CaO, plagioclase and biotite are decreasing, respectively. Based on the rock chemistry and mineral content, the range of the main fracture zone affected by the Ubo fault at Hakseongri is 2m width in total, the secondary deformed zone is 8m width in total. Finally the maximum affected range by the Ubo fault is inferred to 16m width in total.