• Title/Summary/Keyword: Fault displacement

Search Result 172, Processing Time 0.028 seconds

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Study on the Occurrence of Tunnel Damage when a Large-scale Fault Zone Exists at the Top and Bottom of a Tunnel (대규모 단층대가 터널 상하부에 존재하는 조건에서 터널 변상 사례 연구)

  • Jeongyong Lee;Seungho Lee;Nagyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, along with the improvement of high-speed rail and road design speed, the proportion of tunnel construction work is increasing proportionally. In particular, the construction of long tunnels is rapidly increasing due to the mountainous terrain of our country. In this way, due to the trend of tunnels becoming longer, it is difficult to design and construct tunnels by avoiding fault zones. In the case of tunnel construction in mountainous areas, ground investigation is often difficult even during design due to the topographical conditions, making precise ground investigation difficult, and as a result, the upper part of the tunnel is damaged during tunnel construction. When fault zones, which are vulnerable to weathering, exist, the stability of the tunnel during excavation is directly affected by the fault zone distribution, strength characteristics, and groundwater distribution range. In particular, when a fault zone is distributed in the upper part of a tunnel, damage such as tunnel collapse and excessive displacement may occur, and in order to prevent this in advance, countermeasures must be established through analysis of similar cases. Therefore, in this study, when a large-scale fault zone exists in the upper part of a tunnel, the relationship and characteristics of damage to the tunnel structure were analyzed.

Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea (당진 지역 제4기 진관단층의 운동 특성과 단층비지의 ESR 연령)

  • Choi, Pom-Yong;Hwang, Jae Ha;Bae, Hankyoung;Lee, Hee-Kwon;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In order to outline the kinematics and movement history of a new Quaternary fault, Jingwan Fault in Dangjin, West Korea, we analyzed the geometry of the fault zone composed of a few gouge zones, and made ESR dating for fault gouge materials. The $N55^{\circ}E$ striking Jingwan Fault is a normal fault and exhibits a gradual change in dip (gentle in the lower part, steep in the upper part), indicating a listric fault. As for the fault gouge zone, its thickness varies and reaches 2~3 cm in the lower part or between basement rocks, and 20~30 cm in the middle-upper part or between the basement and Quaternary deposit. It is observed in the latter case that more than three gouge zones develop with different colors, and branch out and re-merge, or they are partly superimposed, indicating different movement episodes. The cumulative displacement is estimated to be about 10 m using the geological cross-sections, from which it is inferred that the total length of fault may be about 2.5 km on the basis of the empirical relation between cumulative displacement and fault length. Therefore, a more study would be needed to verify the entire fault length. The results of ESR dating for three gouge samples at different spots along the fault yields ages of $651{\pm}47$, $649{\pm}96$, and $436{\pm}66ka$, indicating at least two movement episodes. Slickenlines observed on the fault planes indicate a pure dip slip (normal faulting), which suggests that the ENE-WSW trending Jingwan Fault was presumably moved under a NNW-SSE extensional environment.

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

A Study on the Bypassing Device for Short-fault Current produced in Low Voltage Distributed Line (저압배전계통에서 발생한 단락전류의 Bypassing 장치에 관한 연구)

  • Youn, Y.J.;Kim, O.K.;Lee, S.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.976-978
    • /
    • 1998
  • In this paper, we designed basic concept and structure of bypassing device which promoted the activity of low voltage line-fuse, when it perceived the too small short-fault current to activate line-fuse which located at the between secondary of pole transformer and home immediately. And we study displacement of bypass contact and electromagnetic force caused by the short-fault current by the basic experiment to understand the basic characteristic of bypassing movements.

  • PDF

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

A Study on Displacement of Tunnel in the Brittel Fracture Zone under Excavation Construction (굴착시공 중 취약지반구간에서 터널변위 거동 연구)

  • Moon, Changyeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.45-52
    • /
    • 2014
  • The tunnel construction is increasing in order to secure a good driving performance of the car and train. A cases of tunnel collapse and the tunnel excessive displacement are increasing with the increase in tunnel construction. In terms of empirical construction methods using the strength characteristics of soil, it is important for tunnel construction to analyze causes of collapse and displacement. In the paper, it was analyzed the causes of collapse and excessive displacement of tunnel in the fractured ground condition. The results of analysis is that the increase of rainfall and lasting increase of displacement and large scale fractured ground are interconnected.

Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions

  • Atefatdoost, Gholam Reza;JavidSharifi, Behtash;Shakib, Hamzeh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.637-648
    • /
    • 2018
  • When the centers of mass and stiffness of a building do not coincide, the structure experiences torsional responses. Such systems can consist of the underlying soil and the super-structure. The underlying soil may modify the earthquake input motion and change structural responses. Specific effects of the input motion shall also not be ignored. In this study, seismic demands of asymmetric buildings considering soil-structure interaction (SSI) under near-fault ground motions are evaluated. The building is modeled as an idealized single-story structure. The soil beneath the building is modeled by non-linear finite elements in the two states of loose and dense sands both compared with the fixed-base state. The infinite boundary conditions are modelled using viscous boundary elements. The effects of traditional and yield displacement-based (YDB) approaches of strength and stiffness distributions are considered on seismic demands. In the YDB approach, the stiffness considered in seismic design depends on the strength. The results show that the decrease in the base shear considering soft soil induced SSI when the YDB approach is assumed results only in the center of rigidity to control torsional responses. However, for fixed-base structures and those on dense soils both centers of strength and rigidity are controlling.

Hysteretic model of isolator gap damper system and its equivalent linearization for random earthquake response analysis

  • Zhang, Hongmei;Gu, Chen
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.485-498
    • /
    • 2022
  • In near-fault earthquake prone areas, the velocity pulse-like seismic waves often results in excessive horizontal displacement for structures, which may result in severe structural failure during large or near-fault earthquakes. The recently developed isolator-gap damper (IGD) systems provide a solution for the large horizontal displacement of long period base-isolated structures. However, the hysteresis characteristics of the IGD system are significantly different from the traditional hysteretic behavior. At present, the hysteretic behavior is difficult to be reflected in the structural analysis and performance evaluation especially under random earthquake excitations for lacking of effective analysis models which prevent the application of this kind of IGD system. In this paper, we propose a mathematical hysteretic model for the IGD system that presents its nonlinear hysteretic characteristics. The equivalent linearization is conducted on this nonlinear model, which requires the variances of the IGD responses. The covariance matrix for the responses of the structure and the IGD system is obtained for random earthquake excitations represented by the Kanai-Tajimi spectrum by solving the Lyapunov equation. The responses obtained by the equivalent linearization are verified in comparison with the nonlinear responses by the Monte Carlo simulation (MCS) analysis for random earthquake excitations.