• Title/Summary/Keyword: Fault diagnosis

Search Result 1,260, Processing Time 0.046 seconds

Development of fault diagnosis fuzzy expert system for advanced control system (고급 분산 제어 시스템을 위한 고장 진단 퍼지 전문가 시스템의 개발)

  • 변승현;박세화;허윤기;서창준;이재혁;김병국;박동조;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.959-964
    • /
    • 1993
  • We developed fault diagnosis fuzzy expert system for ACS(Advanced Control System). ACS is a DCS(Distributed Control System) with advanced control algorithm fault tolerance capabilities, fault diagnosis functions, and so on. Fuzzy expert system developed for an ACS in this paper gives an operator alarm signal depending on the state of process value and manipulated value, and the cause of alarm in real time. Simple experiment result with several rules for the-fault-diagnosis of drum level loop in Seoul-Power-Plant.

  • PDF

Fault Diagnosis for Induction Motor Drive System (유도 전동기 구동 시스템의 고장진단)

  • Kim, Ho-Geun;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.154-156
    • /
    • 1993
  • In this paper, fault analysis using simulation method and fault diagnosis scheme are presented for induction motor drive system. Major faults such as inverter 'a' phase open fault, inverter 'a'-'b' phase short circuit fault and inverter 'a' phase ground fault are analyzed and simulated. On-line and off-line fault diagnosis systems are proposed.

  • PDF

Diagnosis of Poor Contact Fault in the Power Cable Using SSTDR (SSTDR을 이용한 케이블의 접촉 불량 고장 진단)

  • Kim, Taek-Hee;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1442-1449
    • /
    • 2016
  • This paper proposes a diagnosis to detecting poor contact fault and fault location. Electrical fire by poor contact fault of power cable occupied a large proportion in the total electrical installations. The proposed method has an object to prevent electrical fault in advance. But detecting poor contact fault is difficult to detect fault type and fault location by using conventional reflectometry due to faults generated intermittently and repeatedly on the time change. Therefore, in this paper poor contact fault and fault conditions were defined. System generating poor contact fault produced for the experimental setup. SSTDR and algorithm of reference signal elimination heighten performance detecting poor contact fault on live power cable. The diagnosis methods of signal process and analysis of reflected signal was proposed for detecting poor contact fault and fault location. The poor contact fault and location had been detected through proposed diagnosis methods. The fault location and error rate of detection were verified detecting accuracy by experiment results.

Fuzzy Logic Application in Fault Diagnosis of Transformers Using Dissolved Gases

  • Hooshmand, Rahmat-Allah;Banejad, Mahdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.293-299
    • /
    • 2008
  • One of the problems with the fault diagnosis of transformers based on dissolved gas is the inability to match the result of the different standards of fault diagnosis with real world standards. In this paper, the results of the different standards are analyzed using fuzzy logic and then compared with the empirical test. The proposed method is based on the standards and guidelines of the International Electrotechnical Commission (IEC), the Central Electric Generating Board (CEGB), and the American Society for Testing and Material (ASTM) and its main task is to assist the conventional gas ratio method. The comparison between the suggested method and existing methods indicates the capability of the suggested method in the on-line fault diagnosis of transformers. In addition, in some cases the existing standards are not able to diagnose the fault. For theses instances, the presented method has the potential of diagnosing the fault. In this paper, the information of three real transformers is used to show the capability of the suggested method in diagnosing the fault. The results validate the capability of the presented method in fault diagnosis of the transformer.

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

A Hybrid Fault Diagnosis Method based on SDG and PLS;Tennessee Eastman Challenge Process

  • Lee, Gi-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.110-115
    • /
    • 2004
  • The hybrid fault diagnosis method based on a combination of the signed digraph (SDG) and the partial least-squares (PLS) has the advantage of improving the diagnosis resolution, accuracy and reliability, compared to those of previous qualitative methods, and of enhancing the ability to diagnose multiple fault. In this study, the method is applied for the multiple fault diagnosis of the Tennessee Eastman challenge process, which is a realistic industrial process for evaluating process contol and monitoring methods. The process is decomposed using the local qualitative relationships of each measured variable. Dynamic PLS (DPLS) model is built to estimate each measured variable, which is then compared with the estimated value in order to diagnose the fault. Through case studies of 15 single faults and 44 double faults, the proposed method demonstrated a good diagnosis capability compared with previous statistical methods.

  • PDF

Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares (부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단)

  • 이기백;신동일;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

Multiple Fault Diagnosis Method by Modular Artificial Neural Network (모듈신경망을 이용한 다중고장 진단기법)

  • 배용환;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

Development of A Fault Diagnosis System for Assembled Small Motors Using ANN (인공신경회로망을 이용한 소형 모터의 조립 불량 판별 시스템 개발)

  • Lee, Sang-Min;Jo, Jung-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.124-131
    • /
    • 2001
  • Fault diagnosis of an assembled small motor relies usually on human experts hearing ability. The quality of diagnosis depends, however, heavily on physical conditions of the human experts. A fault diagnosis system for assembled small motors is developed using artificial neural network (ANN) in this paper. It is consisted of sound sampling device and fault diagnosis software package. Six parameters are defined to characterize the sampled sound waves. The Levenberg-Marquardt Backpropagation (LMBP) Algorithm is used to diagnose the fault of assembled small motors. Experimental results for more than two hundred small motors verify the performance of the developed system.

  • PDF