• 제목/요약/키워드: Fault current sensor

검색결과 97건 처리시간 0.024초

가공공정의 이상상태진단을 위한 진단전문가시스템의 개발 (Development of Diagnostic Expert System for Machining Process Ffailure Detection)

  • 유송민;김영진
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.147-153
    • /
    • 1997
  • Fault diagnosis technique in machining system which is one of engineering techniques absolutely necessary to automation of manufacturing system has been proposed. As a whole, diagnosis process is explained by two steps: sensor data acquisition and reasoning current state of system with the given sensor data. Flexible disk grinding process implemented in milling machine was employed in order to obtain empirical manufacturing process information. Resistance force data during machining were acquired using tool dynamometer known as sensor which is comparably accurate and reliable in operation. Tool status during the process was analyzed using influnece diagram assigning probability from the statistical analysis procedure.

  • PDF

실시간 다중고장진단 제어기법에 관한 연구 (A Study on Real time Multiple Fault Diagnosis Control Methods)

  • 배용환;배태용;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

정압력 홀을 적용한 초고속 유동 데이터 획득 방안에 관한 연구 (Research on the air data acquisition method using static pressure hole)

  • 최종호;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.406-410
    • /
    • 2010
  • 본 논문은 초고속 비행체의 특정 위치에 정압력을 측정하여 속도, 받음각 등 유동 데이터를 효과적으로 획득할 수 있는 유동 데이터 획득 및 처리 알고리즘에 대해 제시하였다. 기존의 공기 유동데이터 획득시스템과는 다르게 센서 여유(redundancy) 및 오류 검출 기능을 지니고 있으며 전산유동해석(CFD)을 통해 미리 획득한 데이터를 적용한 알고리즘을 적용하였다. 상용 프로그램인 매트랩 및 시뮬링크를 사용하여 알고리즘에 대해 검증하였다.

  • PDF

실시간 확률 모델링 기법을 이용한 유도기기의 고장검출 및 진단시스템 (Fault Detection and Diagnosis Systems of Induction Machines using Real-Time Stochastic Modeling Approach)

  • 이진우;김광수;조현철;이영진;이권순
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.241-248
    • /
    • 2009
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis of the proposed estimation to demonstrate its convergence property by using statistical convergence and system stability theories. We apply our fault detection approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

An Availability of Low Cost Sensors for Machine Fault Diagnosis

  • SON, JONG-DUK
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.394-399
    • /
    • 2012
  • 최근 MEMS 센서는 기계상태감시에 있어서 전력소모, 크기, 비용, 이동성, 응용 등에 있어서 각광을 받고 있다. 특히, MEMS 센서는 스마트센서와 통합가능하고, 대량생산이 가능하여 가격이 저렴하다는 장점이 있다. 이와 관련한 기계상태감시를 위한 많은 실험적 연구가 수행되고 있다. 이 논문은 MEMS 센서들을 3 가지 인공지능 분류기 성능평가를 위한 비교연구에 대해 설명하고 있다. 회전기계에 MEMS 가속도와 전류센서들을 부착하여 데이터를 취득했고, 특징추출과 파라미터 최적화를 위해 Cross validation 기법을 사용하였다. MEMS 센서를 이용한 결함분류기 적용은 적합하다고 판단된다.

  • PDF

영상장치 센서 데이터 QC에 관한 연구 (A study on imaging device sensor data QC)

  • 윤동민;이재영;박성식;전용한
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle

  • Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.4123-4141
    • /
    • 2019
  • Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.

고 신뢰도 초고속 공기 유동 데이터 처리 알고리즘 개발 (Development of High Fidelity Supersonic Flow Air Data Processing Algorithm)

  • 최종호;윤현걸
    • 한국추진공학회지
    • /
    • 제14권2호
    • /
    • pp.54-62
    • /
    • 2010
  • 본 논문에서는 고속 비행체의 공기유동 데이터 측정 시스템에 직접 적용이 가능하며 고 신뢰도를 갖는 유동 데이터 처리 알고리즘 개발에 대해 기술하였다. 과거 공기유동 데이터 획득시스템과는 다르게 전산유동해석(CFD)을 통해 미리 획득한 데이터를 적용한 알고리즘으로 전압력 측정이 필요 없이 충분 한 센서 여유(redundancy) 및 오류 검출기능을 지니고 있다. 개발된 알고리즘에 대한 검증은 상용 프로그램인 매트랩 및 시뮬링크를 사용하여 진행하였다.