• Title/Summary/Keyword: Fault current limiters

Search Result 128, Processing Time 0.025 seconds

Operating properties of resistive type superconducting fault current limiters with a single line-to-ground fault (1선지락사고에 대한 초전도한류기의 동작특성)

  • Park, Hyo-Sang;Park, Chang-Joo;Lee, Sang-il;Chung, Soo-Bok;Oh, Geum-Kon;Chung, Hun-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.279-281
    • /
    • 2003
  • We analysed the operating properties of resistive type superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased up to about 6 times of transport currents immediately after the fault instant and was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unsymmetrical rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unsymmetrical rates of currents were noticeably improved within one cycle after the fault instant. We calculated the zero phase currents for a single line-to-ground fault using the symmetrical component analysis. The positive sequence resistance was reduced remarkably right after the fault but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase symmetrical state in about 60 ㎳ after the fault. The ground currents were almost 3 times of the zero phase mts since most of the fault currents flowed through the grounding line.

  • PDF

Development of new current path pattern of YBCO thin films for Superconducting fault current limiters (초전도 한류기용 YBCO 박막 전류 Path Pattern 개발)

  • Lee B. W.;Kang J. S.;Park K. B.;Oh I. S.
    • Progress in Superconductivity
    • /
    • v.6 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • In this study, electromagnetic analysis of current paths including meander pattern, spiral pattern, and bi-spiral pattern were performed and in order to verity the analysis results, experiments tests including quench test, and insulation tests were performed. In addition, bubble corner concepts were introduced to enhance insulation reliability. From our study, bi-spiral pattern of YBCO thin films were rather effective for quench and insulation than the other patterns. So this current path pattern was adopted for YBCO thin films in order to develop 6.6 kV resistive fault current limiters. Finally YBCO thin films were connected in series and parallel to enhance capacity, and the test results of current limiting characteristics of 6.6kV resistive SFCL were successful. The Progress in Superconductivity is published every six month and serves as a channel for publications on superconductivity and related topics. The author(s) are required to submit THREE copies of the manuscripts along with original figures directly to the Editor.

  • PDF

Quench Behaviors of Superconducting YBCO film for Fault Current Limiters applying Protective Current Transformer (변류기(p-CT)를 적용한 YBCO 초전도 저항형 한류기의 ?치 특성)

  • 박권배;이방욱;강종성;오일성;현옥배
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.128-131
    • /
    • 2004
  • The resistive superconducting fault current limiters (SFCLs) are very attractive devices for the electric power network. But they have some serious problems when the YBCO thin films were used for the current limiting materials due to the in homogeneities caused by manufacturing process. When the YBCO films have some inhomogeneities, simultaneous quenches are difficult to achieve when the fault current limiting units are connected in series for increasing operating voltage ratings. Magnetic field application is one of the prospective way of inducing simultaneous quenches far the series-connected resistive FCL components. Magnetic field was typically generated by the fault current thorough a coil, which is connected to components of the fault current limiter in series, leaving the problem, which provides significant inductance to the power line and suppresses critical current density of the superconducting components. In this article we investigated the possible application of the protective current transformer (p-CT), which is available current source to the magnetic coil. This system inductively coupled to the circuit, therefore, remarkably reducing impedance to the circuit. The current by the protective current transformer was directly fed to the coil, generating magnetic field large enough to reduce critical current density of the components. This successfully induced simultaneous quenches of the series-connected resistive FCL components.

  • PDF

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Characteristics of a Coil type Fault Curent Limiters using a High-Tc Superconducting Thin Film (코일 형태로 제작한 박막형 고온초전도 전류제한기의 특성 해석)

  • Jeong, Dong-Cheol;Choe, Hyo-Sang;Park, Jong-Gwang;Im, Seong-Hun;Go, Geon-Mun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.418-423
    • /
    • 2000
  • In this paper, we reported the current limiting properties of superconducting fault current limiters (SFCL). Our SFCL was patterned in a coil-type on a YBCO film deposited using rf sputtering techniques and was coated with a gold shunt layer in order to disperse the heat generated at hot spots in the YBCO film. Current increased up to 13.5 Apeak at 60 Hz for the voltage of 11.5 Vpeak, which is the minimum quench point, and increased up to 17.6 Apeak at 60 Hz for the voltage of 80 Vpeak. The quench completion time was 5 msec at 11.5 Vpeak and 4 msec at 80 Vpeak respectively. We think that this architecture using coil-type SFCL can be useful for the protection of the power delivery systems from fault currents.

  • PDF

Quench Characteristics of Resistive Superconducting Fault Current Limiters (저항형 초전도 한류소자의 퀜치 특성)

  • Kim, Hye-Rim;Hyun, Ok-Bae;Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

A Study of Quench Behaviors in YBCO Flims for Superconducting Fault Current Limiter (기포발생에 따른 초전도 한류기용 YBCO 박막 퀜치특성 연구)

  • Kang, J.S.;Park, K.B.;Lee, B.W.;Oh, I.S.;Kim, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.796-798
    • /
    • 2002
  • In these days, the interruption capability of some circuit breakers, which are installed in the transmission systems, is getting lower than the magnitude of the fault current because of continuous increase of power demand and relatively short power line which was installed in forms of mesh network As a result of these situations, fault current limiters (FCLs) are strongly necessary. There are various types which is investigated around the world, and new power apparatuses that have been newly considered and developed by many manufactures. In this paper, we considered resistive superconducting fault current limiters with YBCO thin films. The resistive limiters utilize a transition of YBCO films from superconducting to normal state caused by exceeding the critical current. By means of newly occurred impedance, the fault current will be limited effectively. Generally, a few current path patterns are available for YBCO films to enhance the current limiting performance of YBCO films. In this paper. the meander-type and the bi-spiral-type were used for current paths of YBCO flims. When YBCO films are quenched into the normal state, bubbles could be observed on the surface of YBCO films. Using our high-speed camera, the number of bubbles and the size of bubbles could be visualized and the relation between bubbles and current density was analyzed. By means of moving pictures of bubbles, we observed how the quench extended or how the heat was conducted in films.

  • PDF

Review of Typical Fault Current Limiter Types and Application Effect to Improve Power System Reliability (전력 계통 신뢰도 개선을 위한 대표적인 한류기 유형 및 적용 효과 분석)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1133-1142
    • /
    • 2023
  • A rapid increase in power capacity in a power system can seriously reduce system reliability by causing the fault capacity to exceed the breaking capacity of circuit breaker. Fault current limiter is a practical and effective way to improve reliability by limiting fault capacity to the breaking capacity level. In this study, in order to help develop an application methodology when applying fault current limiters to power systems, first the topology and operating principles of each type of fault current limiters was reviewed, and the main advantages and disadvantages was compared. Next, to verify the effect of applying fault current limiter to the power system, the power system in which the fault current limiter was introduced was modeled. Finally, after simulating a three-phase short-circuit fault using EMTP-RV, the effect of application was verified by comparing the fault current before and after application of the fault current limiter and confirming that the fault current was reduced by the fault current limiter.