• Title/Summary/Keyword: Fault contingency

Search Result 34, Processing Time 0.022 seconds

A Method for Transient Stability Assessment using Maximum Generator Angle (발전기 최대 위상각을 이용한 전력계통 과도안정도 평가)

  • Lee, Duck-Jae;Jang, Gil-Soo;Kwon, Sae-Hyuk;Kim, Tae-Kyun;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.239-241
    • /
    • 2003
  • The time domain simulation method of transient stability presents accuracy and reliability, but it demands much computational time. Therefore it is necessary to filter out very stable and very unstable cases from a large set of contingencies. Following a disturbance, the shape and magnitude of representative generator angle which is most increased after fault clearing are the measure of transient stability. This paper propose a method that is not a calculation of the exact CCT of contingency, but a fast assessment of transient stability. Also it can help operators identify transient stability immediately without analyzing the graphical results. The proposed method is applied to the KEPCO system. The PSS/E is used as a time domain simulation engine by IPLAN.

  • PDF

The Switch Installation Criteria For Satisfying Future Reliability Goal (향후 신뢰도 목표를 만족하는 개폐기 설치 기준 제시)

  • Jo, Nam-Hun;O, Jeong-Hwan;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.433-440
    • /
    • 2002
  • The addition of switches to a distribution feeder does, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder. To cover its service area so that feeder-level delivery reaches sufficiently close to all customers, feeders typically split their routes many times, in what is often called a lateral feeder. It is interesting to note, however, that the effectiveness of a switch is very much dependent on the types of lateral feeder. The types of lateral are classified into two types. The first is loop lateral feeder that can connect its load to an adjacent feeder through a tie line in case that a fault occurs in its feeder and it is laid out so that every feeder has complete fault backup through re-switching of its loads to other sources like a main feeder The second is the radial lateral feeder cannot connect its load to an adjacent line, no provision is made for contingency backup of feeders. There are no other circuits in the radial lateral feeder form which to restore power. In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

A Study on Power System Characteristics and Economic Benefit by Operating the New SIHWA Tidal Power Plant (시화호 조력발전소 신설에 따른 전력계통 특성 및 경제적 이득 분석)

  • Kim, Kyu-Ho;Song, Kyung-Bin;Kim, Sang-Min;Lee, Mu-Sung;Choi, Hong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.791-796
    • /
    • 2012
  • This paper presents the various analysis of the power system for operating the new SIHWA tidal power plant. In the analysis of the power system, summer load condition of 2011 is used. Especially, power flow, fault current, voltage and contingency of SIHWA tidal power plant area are analyzed by using PSS/E and there is no problem for the dynamic stability simulation. The new SIHWA tidal power plant is located in near metropolitan area where about 43% amount of the system load is consumed. Therefore, transmission losses are reduced. In addition, system marginal price can be lowered by generating the new SIHWA tidal power plant. The generation pattern of the SIHWA tidal plant is analyzed and the changes of generation are presented for various water levels by control of the rotor angle alpha and beta in water wheel generator.

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.