• 제목/요약/키워드: Fault Tolerant Control

검색결과 297건 처리시간 0.024초

A survey on cooperative fault-tolerant control for multiagent systems

  • Pu Zhang;Di Zhao;Xiangjie Kong;Jialong, Zhang;Lei Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1431-1448
    • /
    • 2024
  • Complexity science is a new stage in the development of systems science that is the frontier areas of contemporary scientific development. Complexity science takes complex systems as the research object, which has attracted widespread attention from researchers in the fields of economy, control, management, and society. In recent years, with the rapid development of science and technology and people's deepening understanding for the theory of complex systems, the systems are no longer an object with a single function, but the systems are composed of multiple individuals with autonomous capabilities through cooperative and cooperation, namely multi-agent system (MAS). Currently, MAS is one of the main models for studying such complex systems. The intelligent control is to break the traditional multi-agent fault-tolerant control (FTC) concept and produce a new type of compensation mechanism. In this paper, the applications of fault-tolerant control methods for MASs are presented, and a discussion is given about development and challenges in this field.

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

Fault Tolerant Control of Magnetic Bearings with Force Invariance

  • Na, Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.731-742
    • /
    • 2005
  • A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic forces as those before failure if the remaining coil currents are properly redistributed. This fault-tolerant, force invariance control can be achieved with simply replacing the distribution matrix with the appropriate one shortly after coils fail, without modifying feedback control law. The distribution gain matrix that satisfies the necessary constraint conditions of decoupling linearized magnetic forces is determined with the Lagrange Multiplier optimization method.

부분관측하에서 직렬생산시스템의 멀티에이젼트 내고장성 관리제어에 관한 연구 (Multiagent Fault-Tolerant Supervisory Control of Serial Production Systems Under Partial Observation)

  • Cho, Kwang-Hyun;Lim, Jong-Tae
    • 전자공학회논문지SC
    • /
    • 제37권5호
    • /
    • pp.34-45
    • /
    • 2000
  • 이 논문에서는 부분관측하에서 직렬생산시스템에 대한 멀티에이젼트 내고장성 관리제어기법을 제안한다. 이를 위해 기존의 이산사건시스템에 대한 내고장성 관리제어기법에 멀티에이젼트 제어기법의 개념을 도입한다. 특히, 직렬연결된 프로세서 사이의 상호 내고장성 개념을 정립하며 제어결과의 상이정보를 이용한 관측불능 고장 식별에 관해 다룬다. 그리고 정립된 개념을 바탕으로 에이젼트 관리제어기의 설계기법을 정형화한다. 또한 제안하는 제어기법의 효용성을 검증하기 위해 폴리프로필렌의 예비중합공정과 중합공정에 있어서의 고장파급제어에 대한 사례연구를 살펴본다.

  • PDF

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법 (An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems)

  • 이기상;유지수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계 (Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems)

  • 장승진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.

Daisy Chain Method for Control Allocation Based Fault-Tolerant Control

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • 대한임베디드공학회논문지
    • /
    • 제8권5호
    • /
    • pp.265-272
    • /
    • 2013
  • This paper addresses a control allocation method for fault-tolerant control by redistributing redundant control surfaces. The proposed method is based on a classical daisy chain approach for the compensation of faulty actuators. The existing daisy chain method calculates a desired moment according to a number of actuator groups. However, this method has a significant limitation; that is, any faulty actuator belonging to the last actuator group cannot be compensated, since there is no more redundant actuator group that can be used to generate the required moments. In this paper, a modified daisy chain method is proposed to overcome this problem. Using the proposed method, the order of actuator groups is readjusted so that actuator groups containing any faulty actuator are always placed in an upper group instead of the last one. A set of simulation results with an F-18 HARV aircraft demonstrate that the proposed method can achieve better performance than the existing daisy chain method.