• 제목/요약/키워드: Fault Protection system

검색결과 418건 처리시간 0.026초

에이전트 환경에서의 1선지락 거리계전 알고리즘 (Agent-Based Distance Relaying Algorithm for Phase-to-Ground Faults)

  • 현승호;진보건;이승재
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.1885-1891
    • /
    • 2007
  • This paper presents a distance relaying algorithm for phase-to-ground faults in transmission lines under Multi-Agent protection environment. In normal condition, a distance relay agent stores the latest states, e.g., voltage of source side, voltage of the opposite side and the loading conditions, etc., through communication between the agents. Once a fault occurs, the relay calculates the fault location using the knowledge about the states just before the fault happens. This stand-alone operation is to improve reliability under the fault condition at which the accuracy or time required for communication may not be guaranteed. The mathematical expression of fault location is derived through loop analysis, before hand, in the manner that both fault current from the opposite end and fault resistance are included implicitly so that their effects are minimized. The suggested algorithm is applied to a typical transmission system with two power sources on both ends to show its effectiveness.

웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구 (A Syudy on the Detection of High Impedance Faults using Wavelet Transforms and Neural Network)

  • 홍대승;배영철;전상영;임화영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.459-462
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating. so it is well hon that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석 (The Stability Analysis of Power System Installed Superconducting Fault Current Limiter)

  • 이승제;이찬주;고태국
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.227-232
    • /
    • 1999
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. For investigation, a simple mimic system(only one generator) is assumed and then the circuit with SFCL in that system is solved for transient performance. In case the SFCL is installed in the power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault in that the machine remains in synchronism for the more time than of without superconducting fault current limiter. It shows that the superconducting fault current limiter not only limits fault current but also protest synchronism. So for design of this SFCL, its synchronism protection property must be considered.

  • PDF

d-q 등가회로를 이용한 이중여자 유도발전기 보호 (Protection for DFIG using the d-q Equivalent Circuit)

  • 강용철;이지훈;강해권;장성일;김용균;박군철
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2173-2178
    • /
    • 2008
  • A doubly-fed induction generator(DFIG) system has been widely used in the modem wind turbines due to variable-speed operation, high efficiency and small converter size. It is well known that an inter-turn fault of a generator is very difficult to be detected. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper proposes a protection algorithm for a DFIG using the d-q equivalent circuit in the time domain. In the case of a DFIG, the voltages and currents of the rotor side as well as the voltages and currents of the stator are available. The proposed algorithm estimates the instantaneous(i.e., converted into the stationary frame) induced voltages from the rotor and the stator sides. If the difference between the two estimated induced voltages exceeds the threshold, the proposed algorithm detects the inter-turn fault. The algorithm can detect a inter-turn fault of a winding. The performance of the proposed algorithm is validated using a PSCAD/EMTDC simulator under inter-turn fault conditions and normal operating conditions such as an external fault and the change of the wind speed.

반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석 (Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter)

  • 김진석;임성훈;김재철;최종수
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

국내계통 보호시스템을 고려한 22.9kV 초전도케이블/한류기 설계사양 제안 (Specifications of 22.9kV HTS cables and FCLs considering protection systems in Korean power distribution system)

  • 이승렬;박종영;윤재영;이병준;양병모
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.50-54
    • /
    • 2009
  • In Korea, 22.9kV 50MVA HTS (High Temperature Superconducting) cables and 630A/3kA hybrid SFCLs (Superconducting Fault Current Limiters) have been or are being developed by LS Cable, LS Industrial System, and Korea Electric Power Research Institute. They will be installed at Icheon 154kV Substation for real-power-distribution-system operation in 2010. This paper proposes specification of current limiting resistor/reactor for the SFCL and fault current condition of the HTS cable for applying the superconducting devices to Korean power distribution system, from the viewpoint of power system protection.

풍력발전단지 연계 전용선로 보호용 거리계전 알고리즘 (A Distance Protection Algorithm for a Transmission Line to Interconnect a Wind Farm to a Utility System)

  • 권영진;강상희;최동민;장성일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.516-518
    • /
    • 2005
  • This paper presents a distance protection algorithm a lied to the linked line for interconnecting wind farm with the utility. The capacity of wind farm is lower than utility system and its fault current level is very low. When a high resistance fault occurs in the linked line, it is difficult to detect accurate fault distance because of reactance effect. By using the characteristic of equivalent source impedance of induction generator which is compensated by capacitor bank and characteristic of the capacity of wind farm, this paper proposes improved distance protection algorithm applied to the linked line. A series of PSCAD/EMTDC simulation results have shown effectiveness of the proposed algorithm.

  • PDF

2회선 송전선로에서 상호임피던스와 고장저항을 고려한 거리계전기의 동작 특성 연구 (A Study on Adaptive Distance Protection of Double-circuit Line with Mutual Impedance and Fault Resistance)

  • 이원석;정창호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.221-226
    • /
    • 2004
  • Power system has recently used Double-circuit Line and Multi-circuit Line in the industrial development. This has an advantage of system stability and reliability, but the complexity of the system has a disadvantage that makes it difficult to protect the power line. Double-circuit Line has two operation conditions in the Single-circuit operation and Double-circuit operation, so it has mutual impedance. To make it possible for the remaining single-line to operate independently while there is a fault with first line or when maintenance is needed, a trip region for the single-circuit operation should be set in order to set the relay trip region. An optimal trip region for each operation, a different operational conditions for the relay setting should be calculated. In this paper, trip regions of each operation condition have been compared by considering mutual impedance and fault resistance that led to the calculation of fault impedance. Also, as we know that one of the advantages in the distance relay is the back-up protection, we calculated the trip region(Zone-2) in consideration of the mutual impedance.

2회선 송전선로에서 상호임피던스와 고장저항을 고려한 거리계전기의 동작 특성 연구 (A Study on Adaptive Distance Protection of Double-circuit Line with Mutual Impedance and Fault Resistance)

  • 이원석;정창호;김진오
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.221-221
    • /
    • 2004
  • Power system has recently used Double-circuit Line and Multi-circuit Line in the industrial development. This has an advantage of system stability and reliability, but the complexity of the system has a disadvantage that makes it difficult to protect the power line. Double-circuit Line has two operation conditions in the Single-circuit operation and Double-circuit operation, so it has mutual impedance. To make it possible for the remaining single-line to operate independently while there is a fault with first line or when maintenance is needed, a trip region for the single-circuit operation should be set in order to set the relay trip region. An optimal trip region for each operation, a different operational conditions for the relay setting should be calculated. In this paper, trip regions of each operation condition have been compared by considering mutual impedance and fault resistance that led to the calculation of fault impedance. Also, as we know that one of the advantages in the distance relay is the back-up protection, we calculated the trip region(Zone-2) in consideration of the mutual impedance.

전자기 반발 구동장치를 사용한 고속 차단기 개발 (Development of High Speed Circuit Breaker using Electromagnetic Repulsion Actuator)

  • 황광수;김영일;문채주
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.441-448
    • /
    • 2022
  • 배전분야 전력계통에 적용되는 보호기기류는 변전소 차단기, 배전선로의 리클로저, 최소 전류 용량 회로, 고장구간 차단기 등이 있다. 이들은 부분 정전이나 대규모 사고를 방지하고 선로의 순간고장 또는 영구고장 발생 시 정상 계통이 건전성을 유지할 수 있도록 광역 정전 파급을 방지한다. 그러나 사고가 발생할 경우 변전소 차단기와 배전선로 보호기기 간의 보호협조 미비로 인하여 광역 정전을 초래할 수 있다. 더 좋은 전력시스템의 건전성을 확보하기 위하여 1주기(16ms) 이내로 동작하는 차단기를 개발할 필요성이 요구된다. 본 연구에서는 친환경 가스절연 방식의 고속도 차단기를 개발하였으며, IEC 62271-111 표준에 기반한 시험에서 우수한 결과를 얻었다. 이 기기는 고장구간을 정확하고 빠르고 신속하게 분리하여 광역 정전 예방에 기여할 것으로 기대된다.