• 제목/요약/키워드: Fault Prediction System

검색결과 134건 처리시간 0.027초

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios

  • 강태섭
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2007
  • For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.

Robust Parameter Design via Taguchi's Approach and Neural Network

  • Tsai, Jeh-Hsin;Lu, Iuan-Yuan
    • International Journal of Quality Innovation
    • /
    • 제6권1호
    • /
    • pp.109-118
    • /
    • 2005
  • The parameter design is the most emphasized measure by researchers for a new products development. It is critical for makers to achieve simultaneously in both the time-to-market production and the quality enhancement. However, there are difficulties in practical application, such as (1) complexity and nonlinear relationships co-existed among the system's inputs, outputs and control parameters, (2) interactions occurred among parameters, (3) where the adjustment factors of Taguchi's two-phase optimization procedure cannot be sure to exist in practice, and (4) for some reasons, the data became lost or were never available. For these incomplete data, the Taguchi methods cannot treat them well. Neural networks have a learning capability of fault tolerance and model free characteristics. These characteristics support the neural networks as a competitive tool in processing multivariable input-output implementation. The successful fields include diagnostics, robotics, scheduling, decision-making, prediction, etc. This research is a case study of spherical annealing model. In the beginning, an original model is used to pre-fix a model of parameter design. Then neural networks are introduced to achieve another model. Study results showed both of them could perform the highest spherical level of quality.

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

오토인코더를 이용한 열간 조압연설비 상태모니터링과 진단 (Condition Monitoring and Diagnosis of a Hot Strip Roughing Mill Using an Autoencoder)

  • 서명교;윤원영
    • 품질경영학회지
    • /
    • 제47권1호
    • /
    • pp.75-86
    • /
    • 2019
  • Purpose: It is essential for the steel industry to produce steel products without unexpected downtime to reduce costs and produce high quality products. A hot strip rolling mill consists of many mechanical and electrical units. In condition monitoring and diagnosis, various units could fail for unknown reasons. Methods: In this study, we propose an effective method to detect units with abnormal status early to minimize system downtime. The early warning problem with various units was first defined. An autoencoder was modeled to detect abnormal states. An application of the proposed method was also implemented in a simulated field-data analysis. Results: We can compare images of original data and reconstructed images, as well as visually identify differences between original and reconstruction images. We confirmed that normal and abnormal states can be distinguished by reconstruction error of autoencoder. Experimental results show the possibility of prediction due to the increase of reconstruction error from just before equipment failure. Conclusion: In this paper, hot strip roughing mill monitoring method using autoencoder is proposed and experiments are performed to study the benefit of the autoencoder.

신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향 (Development Direction of Reliability-based ROK Amphibious Assault Vehicles)

  • 백일호;봉주성;허장욱
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

원자로 냉각재 펌프 고장예측진단을 위한 데이터 분석 플랫폼 구축 (Data Analysis Platform Construct of Fault Prediction and Diagnosis of RCP(Reactor Coolant Pump))

  • 김주식;조성한;정래혁;조은주;나영균;유기현
    • 한국IT서비스학회지
    • /
    • 제20권3호
    • /
    • pp.1-12
    • /
    • 2021
  • Reactor Coolant Pump (RCP) is core part of nuclear power plant to provide the forced circulation of reactor coolant for the removal of core heat. Properly monitoring vibration of RCP is a key activity of a successful predictive maintenance and can lead to a decrease in failure, optimization of machine performance, and a reduction of repair and maintenance costs. Here, we developed real-time RCP Vibration Analysis System (VAS) that web based platform using NoSQL DB (Mongo DB) to handle vibration data of RCP. In this paper, we explain how to implement digital signal process of vibration data from time domain to frequency domain using Fast Fourier transform and how to design NoSQL DB structure, how to implement web service using Java spring framework, JavaScript, High-Chart. We have implement various plot according to standard of the American Society of Mechanical Engineers (ASME) and it can show on web browser based on HTML 5. This data analysis platform shows a upgraded method to real-time analyze vibration data and easily uses without specialist. Furthermore to get better precision we have plan apply to additional machine learning technology.

철도시스템 이상진단 및 예지정비를 위한 FMEA 분석 방안 연구 (A Study on FMEA Analysis Method for Fault Diagnosis and Predictive Maintenance of the Railway Systems)

  • 오왕석;김경화;김재훈
    • 한국안전학회지
    • /
    • 제38권5호
    • /
    • pp.43-50
    • /
    • 2023
  • With the advent of industrialization, consumers and end-users demand more reliable products. Meeting these demands requires a comprehensive approach, involving tasks such as market information collection, planning, reliable raw material procurement, accurate reliability design, and prediction, including various reliability tests. Moreover, this encompasses aspects like reliability management during manufacturing, operational maintenance, and systematic failure information collection, interpretation, and feedback. Improving product reliability requires prioritizing it from the initial development stage. Failure mode and effect analysis (FMEA) is a widely used method to increase product reliability. In this study, we reanalyzed using the FMEA method and proposed an improved method. Domestic railways lack an accurate measurement method or system for maintenance, so maintenance decisions rely on the opinions of experienced personnel, based on their experience with past faults. However, the current selection method is flawed as it relies on human experience and memory capacity, which are limited and ineffective. Therefore, in this study, we further specify qualitative contents to systematically accumulate failure modes based on the Failure Modes Table and create a standardized form based on the Master FMEA form to newly systematize it.

IoT를 활용한 흔들림 방지 버팀대의 내진설계에 관한 연구 (A Study on the Seismic Resistance Design of Sway Brace Device using Internet of Things)

  • 탁성인;유봉근;손봉세
    • 한국화재소방학회논문지
    • /
    • 제31권1호
    • /
    • pp.58-62
    • /
    • 2017
  • 국내에서도 내진설계의 필요성이 점차 증대되고 있다. 그 중에서도 비구조요소인 소화배관의 흔들림 방지 버팀대에 관한 연구가 계속되고 있다. 이에 본 연구에서는 흔들림 방지 버팀대의 하중 시험을 통하여 유효한 범위를 측정하였다. 그 결과, 하중 0에서부터 18.5 kN까지 설계안전 범위로 측정되었으며 최대 29.4 kN에서도 흔들림 방지 버팀대의 구조 및 성능에 이상 없이 정상 작동하였다. 또한 사물인터넷의 환경을 이용하여 센서노드로부터 데이터를 전송받아 유효 하중범위 안에서 추출과 예측단계를 거쳐 재난정보를 수신케 하는 모니터링 시스템의 모듈을 구성하였다.

인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구 (A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI))

  • 이경현;백락준;김우수;최희정
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.403-409
    • /
    • 2024
  • 본 논문에서는 산업안전보건법에 따라 유해·위험 설비 사업자가 제출하여 공정안전관리 전담기관으로부터 승인받은 공정안전보고서의 데이터를 기반으로 사업장 안전성 향상을 위한 인공지능 통합 공정안전관리(PSM) 시스템 설계를 위한 가이드라인을 제안하였다. 제안된 가이드라인으로 구성되는 시스템은 단일사업장 또는 다수의 사업장을 운영하는 사업자와 공정안전관리 전담기관에 각각 구축하며, 데이터 수집·전처리, 확장 및 분할, 레이블링, 학습 데이터 셋구축 등의 주요 구성 요소와 단계로 구성하였다. 각 공정에서 발생하는 공정 운영 데이터 및 변경 허가 승인 데이터의 수집이 가능하며, 사업장 운영에서 발생하는 모든 데이터의 분석을 통해 잠재적인 고장 예측 및 유지보수 계획을 수립하여, 공정 운전 상황에서의 의사 결정 지원이 가능하다. 또한, 정확하고 신뢰할 수 있는 학습 데이터, 특화된 데이터 셋을 이용하여 시간 및 비용 절감, 인적 오류를 포함한 다양한 위험 요소 감지와 예측, 지속적인 모델 개선 등에 유용성과 효과를 갖으며, 이를 통해 작업장 안전성 향상 및 사고 예방이 가능하다.