• Title/Summary/Keyword: Fault Mode

Search Result 326, Processing Time 0.027 seconds

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

A Fault Analysis on AC Microgrid with Distributed Generations

  • Shin, Seong-Su;Oh, Joon-Seok;Jang, Su-Hyeong;Chae, Woo-Kyu;Park, Jong-Ho;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1600-1609
    • /
    • 2016
  • As the penetration of different types of renewable energy sources (RES) and energy storage systems (ESS) increases, the importance of stability in AC microgrid is being emphasized. Especially, RES and ESS which are operated using power electronics have difference in output characteristics according to control structures. When faults like single-line-to-ground fault or islanding operation occur, this means that a fault should be interpreted in different way. Therefore, it is necessary to analyze fault characteristics in AC microgrid in case of grid-connected mode and standalone mode. In this paper, the fault analysis for AC microgrid is carried out using PSCAD/EMTDC and an overvoltage problem and the countermeasures were proposed.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

The Operation Characteristics of Dual-mode Power Converter for DC Reactor Type Superconducting Fault Current Limiter (DC 리액터형 고온초전도한류기를 위한 전력변환기의 dual-mode 운전특성)

  • 전우용;이승제;안민철;이안수;윤용수;윤경용;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.43-46
    • /
    • 2003
  • The dc reactor type high-Tc superconducting fault current limiter(SFCL) is composed of three parts, a power converter, a magnetic core reactor(MCR) and a dc reactor. This study concerned with the power converter of the DC reactor type high-Tc SFCL. The rectifying devices which power converter of 6.6kV/200A SFCL consists of have to endure high voltage. We propose the dual mode power converter to reduce the voltage which each rectifying device endures. In the single phase the experiment and simulation of dual mode power converter and the simulation of power converter with one bridge rectifier are performed. The current of each system with different power converter has a same tendency and the voltage which rectifying device of dual mode power converter endures is reduced in half by comparison with that of power converter with one bridge rectifier. We found dual mode power converter can be applied to SFCL.

  • PDF

A System Operating Algorithm for the Effective Operation of a Multi-type Air-conditioning System (멀티형공조시스템의 효과적인 운전을 위한 시스템운전알고리즘)

  • Han Do-Young;Park Kwan-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.587-595
    • /
    • 2006
  • A system operating algorithm was developed for the effective operation of a multi-type air-conditioning system. The system operating algorithm includes control algorithms for a safety mode, an initial operating mode, a stabilization mode, a fault diagnosis mode, an efficiency mode, and a tracking mode. Various tests were performed to show the effectiveness of these algorithms. Tests showed good results for the operation of a multi-type air-conditioning system. Therefore, these algorithms developed for this study may be used for the effective control of a multi-type air-conditioning system.

Fault Detection and Compensation Scheme of Switch Open-fault in VSI for Two-phase Excitation Drive (2상 여자 구동용 전압형 인버터의 스위치 개방고장 검출 및 보상 기법)

  • Lee, Kui-Jun;Park, Nam-Ju;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • This paper proposes the novel open-fault detection/isolation scheme of inverter switch in two-phase excited VSI. This scheme identify open-fault using voltage sensor at lower switches of each phase according to the operating mode. It has benefit of simple implementation, fast detection and robustness in the load so that stab of the system is improved. Also, at faulty mode, it minimizes faulty effect and makes possible continuous operation through the reconfiguration procedure applying four-switch operation. The validity of proposed fault detection scheme is verified by experimental results.

Control System of 600kW EBOP for Molten Carbonate Fuel Cell Generation System (600kW급 용융탄산염 연료전지 발전시스템용 EBOP 제어시스템)

  • Hwang, Tai-Sik;Joung, Woo-Taek;Yang, Byung-Hoon;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.18-20
    • /
    • 2008
  • An electrical balance of plant(EBOP) of a 600kW molten carbonate fuelcell (MCFC) has to transit from grid-connected(GC) mode to grid-independent(GI) mode when a grid is in a fault conditions. A minimum transition time is limited by four cycle for a 600kW MCFC to ride through a grid fault. In this paper, we propose a control algorithm of a 600kW EBOP for a MCFC system. The EBOP has three operation modes, i.e., GC mode, GI mode, and grid-synchronized(GS) mode. The EBOP controls output currents in a GC mode and regulates output voltages in GI or GS mode. GS mode is defined as an interface between GC mode and GI mode to make a mode transition smooth, i.e., limitation of inrush currents, regulation of output voltages within ANSI standard. Simulations and experiments carried out to verify the effectiveness of the proposed control algorithm.

  • PDF

Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

A Study on the Fault Tolerant System for the Optimum Performance of Virtual Sensor (가상센서를 활용한 고장 허용 시스템에 관한 연구)

  • Song, Min-Woo;Choi, Won-Seok;Lee, Doo-Wan;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1634-1640
    • /
    • 2010
  • In this paper, I studied the "Establishment of Fault Tolerant System" as well as the sensor and cylinder that are general components being used in automation equipments. I design a system that when the sensor breaks down on free flow conveyor, it will be converted to virtual sensor system mode by simulation, also I design IPC(Internal Pressure Cylinder), a basis of various applicable fault tolerant system by analyzing the changing of analog data according to the load of operation. With IPC and the increasing ability of developer, the Fault Tolerant System will be widely applied in the increasment of service time of cylinder, grease pouring time expection, fault recognition of cylinder and etc.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.