• 제목/요약/키워드: Fault Estimation

검색결과 393건 처리시간 0.023초

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

SCADA 자동고장판단을 위한 데이터 흐름제어 알고리즘 연구 (Study of data flow control algorithm for automatic fault estimation in SCADA)

  • 박정진;김건중;황인준;양민욱;이재원;조휘창;김태원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.296-298
    • /
    • 2008
  • Currently SCADA System faces various fault situation. Operator must recognize all fault state and management plans. But it is not easy to recognize all category and acquired error data. So it is needed that automatic fault estimation. Automatic fault estimation is possible to data flow control. Data flow control method is two type. One is alarm processing and the other one is topology processing. This paper provide two type processing method in SCADA data flow control.

  • PDF

불확정 시스템에서의 복합성 이상검출 및 격리 (Composite Fault Detection and Isolation for Uncertain Systems)

  • 유호준;김대우;권오규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.257-262
    • /
    • 1999
  • This paper proposes a composite fault detection and isolation method by combining the parameter estimation method[1] with the observer-based method[2] to take advantages of both methods. Some properties of the parameter estimation method and the observer-based method are revieved, and the composite algorithm is presented. To exemplify the performance of the method proposed, some simulations applied to remotely piloted vehicle are performed.

  • PDF

유사측도를 이용한 무인기의 고장진단 및 검출 (Fault Detection and Identification of Uninhabited Aerial Vehicle using Similarity Measure)

  • 박욱제;이상혁
    • 한국항공운항학회지
    • /
    • 제19권2호
    • /
    • pp.16-22
    • /
    • 2011
  • It is recognized that the control surface fault is detected by monitoring the value of the coefficients due to the control surface deviation. It is found out the control surface stuck position by comparing the trim value with the reference value. To detect and isolate the fault, two mixed methods apply to the real-time parameter estimation and similarity measure. If the scatter of aerodynamic coefficients for the fault and normal are closing nearly, fault decision is difficult. Applying similarity measure to decide for fault or not, it makes a clear and easy distinction between fault and normal. Low power processor is applied to the real-time parameter estimator and computation of similarity measure.

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘 (Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance)

  • 권영진;김수환;강상희
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

Open Circuit Fault Diagnosis Using Stator Resistance Variation for Permanent Magnet Synchronous Motor Drives

  • Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.985-990
    • /
    • 2013
  • This paper proposes a novel fault diagnosis scheme using parameter estimation of the stator resistance, especially in the case of the open-phase faults of PMSM drives. The stator resistance of PMSMs can be estimated by the recursive least square (RLS) algorithm in real time. Fault diagnosis is achieved by analyzing the estimated stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any extra devices. Moreover, the estimated parameter information can be used to improve the control performance. The feasibility of the proposed fault diagnosis scheme is verified by simulation and experimental results.

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

장거리 송전선로를 고려한 사고거리추정 수치해석 알고리즘 (A Numerical Algorithm for Fault Location Estimation Considering Long-Transmission Line)

  • 김병만;채명석;강용철
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2139-2146
    • /
    • 2008
  • This paper presents a numerical algorithm for fault location estimation which used to data from both end of the transmission line. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the PMUs(Phasor Measurement Units) in the time-domain. This paper has separated from two part of with/without shunt capacitance(short/long distance). Most fault was arc one-ground fault which is 75% over [1]. so most study focused with it. In this paper, the numerical algorithm has calculated to distance for ground fault and line-line fault. In this paper, the algorithm is given with/without shunt capacitance using II parameter line model, simple impedance model and estimated using DFT(Discrete Fourier Transform) and the LES(Least Error Squares Method). To verify the validity of the proposed algorithm, the EMTP(Electro- Magnetic Transient Program) and MATLAB did used.

ART2 신경회로망을 이용한 선형 시스템의 다중고장진단 (Multiple faults diagnosis of a linear system using ART2 neural networks)

  • 이인수;신필재;전기준
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF