• 제목/요약/키워드: Fault Diagnosis System

검색결과 837건 처리시간 0.022초

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

전자식 스로틀 제어시스템을 위한 오류 자기진단 기능 설계 및 구현 (The Design and Implementation of a Fault Diagnosis on an Electronic Throttle Control System)

  • 강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.9-16
    • /
    • 2007
  • This paper describes the design and implementation of the fault diagnosis on the Electronic Throttle Control(ETC) System. The proposed fault diagnosis consists of an input signal, actuator and a processor diagnosis. The input signal diagnosis can detect the faults of the ETC system's input signals such as the position sensor fault, source voltage fault, load current fault, and desired position fault. The actuator diagnosis is able to detect the actuator fault due to the actuator aging and an obstacle which interfere in the movement of the actuator. The processor diagnosis detects the fault which prevents the microprocessor from operating the ETC software. In order to protect the breakdown of the ETC system and assure the driving safety, appropriate reactions are also proposed according to the detected faults. The safety and reliability of the ETC system can be improved by the proposed fault diagnosis.

인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘 (Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle)

  • 전남주;이형철
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

에이젼트기반 실시간 고장진단 시뮬레이션기법 (Agent based real-time fault diagnosis simulation)

  • 배용환;이석희;배태용;이형국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.670-675
    • /
    • 1994
  • Yhis paper describes a fault diagnosis simulation of the Real-Time Multiple Fault Dignosis System (RTMFDS) for forcasting faults in a system and deciding current machine state from signal information. Comparing with other diagnosis system for single fault,the system developed deals with multiple fault diagnosis,comprising two main parts. One is a remotesignal generating and transimission terminal and the other is a host system for fault diagnosis. Signal generator generate the random fault signal and the image information, and send this information to host. Host consists of various modules and agents such as Signal Processing Module(SPM) for sinal preprocessing, Performence Monotoring Module(PMM) for subsystem performance monitoring, Trigger Module(TM) for multi-triggering subsystem fault diagnosis, Subsystem Fault Diagnosis Agent(SFDA) for receiving trigger signal, formulating subsystem fault D\ulcornerB and initiating diagnosis, Fault Diagnosis Module(FDM) for simulating component fault with Hierarchical Artificial Neural Network (HANN), numerical models and Hofield network,Result Agent(RA) for receiving simulation result and sending to Treatment solver and Graphic Agent(GA). Each agent represents a separate process in UNIX operating system, information exchange and cooperation between agents was doen by IPC(Inter Process Communication : message queue, semaphore, signal, pipe). Numerical models are used to deseribe structure, function and behavior of total system, subsystems and their components. Hierarchical data structure for diagnosing the fault system is implemented by HANN. Signal generation and transmittion was performed on PC. As a host, SUN workstation with X-Windows(Motif)is used for graphic representation.

  • PDF

계층구조 접근에 의한 복합시스템 고장진단 기법 (Fault Diagnosis Method of Complex System by Hierarchical Structure Approach)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.135-146
    • /
    • 1997
  • This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.

  • PDF

상관분석법에 의한 선박기관실 고장진단 시스템 개발 (The Development of Diesel Engine Room Fault Diagnosis System Using a Correlation Analysis Method)

  • 김영일;오현경;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.253-259
    • /
    • 2006
  • There is few study which automatically diagnoses the fault from ship's monitored data. The bigger control and monitoring system is. the more important fault diagnosis and maintenance is to reduce damage caused by system fault. This paper proposes fault diagnosis system using a correlation analysis algorithm which is able to diagnose and forecast the fault from monitored data and is composed of fault detection knowledge base and fault diagnosis knowledge base. For all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem, To verify capability of fault detection, diagnosis and prediction, FMS(Fault Management System) is developed by C++. Simulation by FMS is carried out with population data set made by the log book data of 2 months duration from a large full container ship of H shipping company.

상관분석법에 의한 선박기관실 고장진단 시스템 개발 (The Development of Diesel Engine Room Fault Diagnosis SystemUsing a Correlation Analysis Method)

  • 김영일;오현경;천행춘;유영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.251-256
    • /
    • 2005
  • There is few study which automatically diagnose the fault from ship's monitored signal. The bigger control and monitoring system is, the more important fault diagnosis and maintenance is to reduce damage brought forth by system fault. This paper proposes fault diagnosis system using a correlation analysis algorithm which is able to diagnose and forecast the fault and is composed to fault detection knowledge base and fault diagnosis knowledge base. For this all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem by analyzing ship's operation data. To verifying capability of fault detection, diagnosis and prediction, Fault Management System(FMS) is developed by C++. Simulation experiment by FMS is carried out with population data set made by log book data of 2 months duration from a large full container ship of H shipping company.

  • PDF

발전소 사뮬레이터 I/O 카드 레벨 고장 진단 시스템의 구현 (Implementation of an 1/O Card Fault Diagnosis System In Power Plant Simulator)

  • 변승현;마복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3192-3194
    • /
    • 2000
  • Many I/o cards such as AOCs, DICs, DOCs and ROCs are used to deal with I&C instruments of control panel in full-scope power plant simulator. To help the maintenance of I/O cards, an I/o card fault diagnosis system is implemented in this paper. The implemented fault diagnosis system has the automatic fault diagnosis function and manual card test function for fault diagnosis. Finally, the test result using I/O cards shows the validity of the implemented fault diagnosis system.

  • PDF

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.