• 제목/요약/키워드: Fault Detection and Isolation

검색결과 177건 처리시간 0.031초

항공기용 가스터빈 엔진의 건전성 관리를 위한 소프트웨어 발전 동향 (A Survey on the Software Technology of Health Management System for Aircraft Gas Turbine Engine)

  • 박익수;기태석;김중회;민성기
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.13-21
    • /
    • 2018
  • 항공기용 엔진의 건전성 관리를 위한 탑재장비 및 지상 장비 소프트웨어의 발전 동향을 살펴보았다. 과거에는 지상 장비 중심의 결함 검출 및 식별기법에서 탑재 소프트웨어를 이용한 모델 기반의 건전성 식별 기법으로 변화해 왔고, 현재는 지상과 탑재장비 소프트웨어의 통합된 구조로 발전해 가고 있다. 이러한 진보된 기법이 선진국을 중심으로 기술발전을 이루어 가고 있음에 비해 국내의 연구는 초보적인 수준에 머물러 있다. 본 논문에서는 국내외 기술개발 현황을 고려하여 최적의 발전 방향을 제시하였다.

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

Structural damage detection using decentralized controller design method

  • Chen, Bilei;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.779-794
    • /
    • 2008
  • Observer-based fault detection and isolation (FDI) filter design method is a model-based method. By carefully choosing the observer gain, the residual outputs can be projected onto different independent subspaces. Each subspace corresponds to the monitored structural element so that the projected residual will be nonzero when the associated structural element is damaged and zero when there is no damage. The key point of detection filter design is how to find an appropriate observer gain. This problem can be interpreted in a geometric framework and is found to be equivalent to the problem of finding a decentralized static output feedback gain. But, it is still a challenging task to find the decentralized controller by either analytical or numerical methods because its solution set is, generally, non-convex. In this paper, the concept of detection filter and iterative LMI technique for decentralized controller design are combined to develop an algorithm to compute the observer gain. It can be used to monitor structural element state: healthy or damaged. The simulation results show that the developed method can successfully identify structural damages.

무인기용 이중화 비행조종컴퓨터의 고장관리 설계 (A Fault Management Design of Dual-Redundant Flight Control Computer for Unmanned Aerial Vehicle)

  • 오태근;윤형식
    • 한국항공우주학회지
    • /
    • 제50권5호
    • /
    • pp.349-357
    • /
    • 2022
  • 무인항공기의 비행조종컴퓨터는 비행 안전에 필수적인 장비로써 개발 단계에서부터 신뢰성과 안전성의 확보가 필수적이며, 고장 발생 시에도 정상적으로 기능을 수행할 수 있는 다중화 기반의 고장관리 설계가 요구된다. 무인기의 경우에는 비용, 무게, 전력소모 등을 감소하기 위하여 비행조종시스템의 이중화 설계를 고려하지만, 고장관리를 위한 고장 검출 및 분리 설계에 많은 제약이 있다. 본 논문에서는 무인기용 이중화 비행조종컴퓨터의 신뢰성을 향상시키기 위한 고장 검출 및 고장 분리를 위한 고장관리 설계 방안을 제안한다. 그리고 고장관리 설계를 적용해 개발한 비행조종컴퓨터는 통합시험환경에서 기능 시험을 수행하고 HILS 환경에서 고장 영향성 확인 시험을 수행한 후 무인기에 탑재하여 비행시험을 통해 그 신뢰성을 검증하였다.

복합 유도무기체계의 신뢰성 확보를 위한 체계 통합 시험 설계 (System Integration Test Design to Ensure Reliability of Complex Guided Missile System)

  • 황호성;조경환;박인철;윤원식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.105-119
    • /
    • 2012
  • In this paper, we have proposed a methodology which can make effective test for system integration of complex guided missile system. System integration test play a significant role in the development of weapon system, providing the means to detect and isolate faults on first linkage between sub-systems. Integration tests for domestic weapon system has executed not a technology-intensive method based on tool but labor-intensive method based on experience. Higher cost, longer period, and more resource are required to execute system integration test for complex guided missile system comparing with past weapon systems, because recently weapon systems have more complex and more networked functions. Because the proposed design method for system integration test decreases number of test case, it lead to a decrease of cost, period, and resource for integration test of weapon system. The proposed configuration for system integration test will ensure reliability through detection and isolation of fault on linkage between sub-systems.

An Improved Hybrid Kalman Filter Design for Aircraft Engine based on a Velocity-Based LPV Framework

  • Liu, Xiaofeng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.535-544
    • /
    • 2017
  • In-flight aircraft engine performance estimation is one of the key techniques for advanced intelligent engine control and in-flight fault detection, isolation and accommodation. This paper detailed the current performance degradation estimation methods, and an improved hybrid Kalman filter via velocity-based LPV (VLPV) framework for these needs is proposed in this paper. Composed of a nonlinear on-board model (NOBM) and VLPV, the filter shows a hybrid architecture. The outputs of NOBM are used for the baseline of the VLPV Kalman filter, while the system performance degradation factors on-line estimated by the measured real system output deviations are fed back to the NOBM for its updating. In addition, the setting of the process and measurement noise covariance matrices' values are also discussed. By applying it to a commercial turbofan engine, simulation results show the efficiency.

교류전동기 제어시스템을 위한 실시간 고장검출진단 (Real-time FDI Schemes for AC Motor Control Systems)

  • 박태건;류지수;이기상
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.77-81
    • /
    • 2002
  • In many high performance engineering systems such as automated production system and transportation systems, AC-servo drives are employed as the most Important driving parts. And the faults of servo drives result in overall system performance deterioration or an unscheduled shutdown In critical situations. The real-time fault detection and isolation(FDI) scheme Is very useful to prevent them and to guarantee the desired reliability of the overall system. In this paper, the FDI schemes which can be applied to AC servo drives are introduced and some new results are presented.

  • PDF

Performance Evaluation Involving Multiple Parameters in Built-In-Test Systems

  • Kang, Hee-Jung;Yoo, Wang-Jin
    • 한국경영과학회지
    • /
    • 제16권2호
    • /
    • pp.148-158
    • /
    • 1991
  • The Built-In-Test (BIT) system is an integrated subsystem for the determination of the health status of any primary system. The BIT consists of hardware and software installations directed at performance of the functions of fault detection, diagnosis and isolation, as well as primary system record failure information. Evaluation of the difinitions appropriate to the BIT system, including system characteristics and parameters, is important to an understanding of system functions. The object of this paper is to present general definitions of the BIT diagnosis parameters and a semiquantiative evaluation method for BIT systems. Finally, two case studies for actual problem solutions are included.

  • PDF

인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법 (Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks)

  • 윤태섭
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

Hopfield 신경망에 의한 비선형 계통의 파라미터 추정 (Parameter Identification of Nonlinear Systems using Hopfield Network)

  • 이기상;박태건;함재훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.710-713
    • /
    • 1995
  • Hopfield networks have been applied to the problem of linear system identification. In this paper, Hopfield network based parameter identification scheme of non-linear dynamic systems is proposed. Simulation results demonstrate that Hopfield network can be used effectively for the identification of non-linear systems assuming that the system states and their time derivatives are available. Therefore, the proposed scheme can be applied in fault detection and isolation(FDI) and adaptive control of non-linear systems where the Hopfield networks perform on-line identification of system parameters.

  • PDF