• Title/Summary/Keyword: Fault Detection And Diagnosis

Search Result 461, Processing Time 0.018 seconds

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System (5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법)

  • Baek, Seung-Koo;Shin, Hye-Ung;Kang, Seong-Yun;Park, Choon-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

Robust fault detection and diagnosis in boiler systems

  • Kim, Yu-Soong;Kwon, Oh-Kyu;Hong, Il-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.537-542
    • /
    • 1994
  • This paper gives a general survey of model-based fault detection and dignosis methods. Specific applications of these ideas to boiler systems will also be discussed. A novel aspect of the fault detection technique described here is that it explicitly accounts for the effects of using simplified models and errors from linearizing a nonlinear system at an operation point. Inclusion of these effects is shown to lead to novel fault detection procedures which outperform existing methods when applied to typical fault scenarios in boiler systems.

  • PDF

A Study on the Fault Diagnosis System for Combustion System of Diesel Engines Using Knowledge Based Fuzzy Inference (지식기반 퍼지 추론을 이용한 디젤기관 연소계통의 고장진단 시스템에 관한 연구)

  • 유영호;천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In general many engineers can diagnose the fault condition using the abnormal ones among data monitored from a diesel engine, but they don't need the system modelling or identification for the work. They check the abnormal data and the relationship and then catch the fault condition of the engine. This paper proposes the construction of a fault diagnosis engine through malfunction data gained from the data fault detection system of neural networks for diesel generator engine, and the rule inference method to induce the rule for fuzzy inference from the malfunction data of diesel engine like a site engineer with a fuzzy system. The proposed fault diagnosis system is constructed in the sense of the Malfunction Diagnosis Engine(MDE) and Hierarchy of Malfunction Hypotheses(HMH). The system is concerned with the rule reduction method of knowledge base for related data among the various interactive data.

Fault Diagnosis of a Voltage-Fed PWM Inverter for a Three-parallel Power Conversion System in a Wind Turbine

  • Ko, Young-Jong;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.686-693
    • /
    • 2010
  • In this paper, a fault diagnosis method based on fuzzy logic for the three-parallel power converter in a wind turbine system is presented. The method can not only detect both open and short faults but can also identify faulty switching devices without additional voltage sensors or an analysis modeling of the system. The location of a faulty switch can be indicated by six-patterns of a stator current vector and the fault switching device detection is achieved by analyzing the current vector. A fault tolerant algorithm is also presented to maintain proper performance under faulty conditions. The reliability of the proposed fault detection technique has been proven by simulations and experiments with a 10kW simulator.

Fault Detection System Development for a Spin Coater Through Vibration Assessment (스핀코터의 진동 평가를 통한 이상 검출 시스템 개발)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.47-54
    • /
    • 2009
  • Spin coaters are the essential instruments in micro-fabrication processes, which apply uniform thin films to flat substrates. In this research, a spin coater diagnosis system is developed to detect the abnormal operation of TFT-LCD process in real time. To facilitate the real-time data acquisition and analysis, the circular-buffered continuous data transfer and the short-time Fourier transform are applied to the fault diagnosis system. To determine whether the system condition is normal or not, a steady-state detection algorithm and a frequency spectrum comparison algorithm using confidence interval are newly devised. Since abnormal condition of a spin coater is rarely encountered, algorithm is tested on a CD-ROM drive and the developed program is verified by a function generator. Actual threshold values for the fault detection are tuned in a spin coater in process.

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

Fault Diagnosis of Rotating Machines Using Wavelet Transform and Neural Network (웨이블렛 변환과 신경망 알고리즘을 이용한 회전기기 결함진단)

  • 최태묵;조대승
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.61-65
    • /
    • 2002
  • The fault detection and diagnosis of rotating machinery widely used in plants including the ship are important for maintaining the performance of Plants. Recently, the wavelet transform has been recognized an efficient method to detect a little variation of physical quantities by the synchronous localization of time and frequency domains using the translation and dilation of signals. In this Paper, In order to develop efficient and reliable fault detection and diagnosis system rotating machines, the performance of wavelet transformation to detect a little variation of machine status and neural network to diagnose the cause of machine faults are investigated and experimented.

Fault detection of the controller based on multiprocessor (다중 프로세서를 이용한 제어기에서의 자체고장탐지)

  • 신영달;김지홍;정명진;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.426-430
    • /
    • 1987
  • The reliability is the critical issue in many computer applications, particularly in process control system. In this paper we describe how to achieve the reliability improvement in controller system based multiprocessor. The proposed method is accomplished by using the techniques of fault detection, fault isolation, safe action, and fault diagnosis.

  • PDF