• Title/Summary/Keyword: Fatty acid methyl ester

Search Result 167, Processing Time 0.025 seconds

Analysis of Fatty Acid Compositions and Biodiesel Properties of Seeds of Woody Oil Plants in Korea (국내 목본 유지식물 종자의 지방산 조성 및 바이오디젤 특성 분석)

  • Kim, Kwang Soo;Lee, Yong Hwa;Jang, Young Seok;Choi, In Hu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.628-635
    • /
    • 2013
  • In order to evaluate their potential as sources of biodiesel, oil content and fatty acid composition of seeds and fatty acid methyl ester (FAME) properties from seven woody oil plants in Korea were analysed. The oil content of seed of all woody plant species ranged from 15.1 (Ligustrum lucidum) to 70.3% (Camellia japonica) by dry weight. Fatty acid composition consisted mainly of oleic acid, linoleic acid, linolenic acid, palmitic acid and stearic acid, with oleic acid being the most abundant. The content of unsaturated fatty acids of all species was higher than saturated fatty acids. Oxidation stability of seed oils of all woody plants ranged from 2.25 to 8.62 hours/$110^{\circ}C$. Fatty acid methyl ester of Styrax japonica has been found to have the highest iodine value, indicating that unsaturated fatty acid content is higher than other seed oils. Cold filter plug point(CFPP) was varied over a wide range from $0^{\circ}C$ to $-13^{\circ}C$. The cold fluidity of FAME of Chionanthus retusa were excellent.

Bio-diesel of Vegetable Oils by Lipase Catalyzed Trans-esterification into Continuous Process (연속공정에서 리파제 촉매 전이에스테르화에 의한 식물유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.106-115
    • /
    • 2005
  • Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50$^{\cdot}C$ of reaction temperature under two-steps addition of methanol with 2${\times}$2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.

Biodiesel Production using Microfiltration Tubular Membrane (정밀여과용 관형막을 이용한 바이오디젤 제조)

  • Lee, Won-Joong;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • Biodiesel was produced from Canola, soybean and Jatropha oils combined methanol using continuously recycled membrane reactor. The membrane served to react and separate the unreacted oil from the product stream, producing high-purity fatty acid methyl ester (FAME). Two ceramic tubular membranes having different nominal pore sizes of 0.2 and 0.5 ${\mu}m$ were used. Permeate was observed at 0.5, 1.0 and 2.0 bar with a given flow rate, respectively. The permeate flux for 0.2 ${\mu}m$ membrane at 0.5 bar and 400 mL/min flow rate was 15 L/$m^2{\cdot}hr$. Also FAME content in permeate was the highest at 0.5 bar, and decreased with increasing operating pressure.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

groES Expression Related to Antifungal Activity of Streptomyces sp. SAR01 (Streptomyces sp. SAR01 균주에서의 항진균 관련 groES의 발현)

  • 이영근;김재성;조규성;장병일;추철형
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.162-167
    • /
    • 2002
  • To analyse proteins and gene related to antifungal activity, SAR01 strain was isolated from a brown seaweed and identified as Streptomyces sp. by FAME(fatty acid methyl ester) analysis. Antifungal activity deficient mutant(SAR535) of Streptomyces sp. SAR01 was induced by gamma radiation$({60}^Co)$. It was found that 6 specific protein spots appeared only in SAR01 by 2-D electrophoresis analysis. Among them, a protein of 10 kDa had homology of 96% with 10 kD chaperonin cpn 10 (GroES) by Basic Local Alignment Search Tool(BLAST, NCBI) analysis. SAR535 transformants into which groES was transferred by electroporation revealed antifungal activity newly similar with SAR01 It suggested that groES be supposed to be related to the antifungal activity of Streptomyces sp. SAR01.

Antibacterial Effect of Fructose Laurate Synthesized by Candida antarctica B Lipase-Mediated Transesterification

  • Lee, Ki Ppeum;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1579-1585
    • /
    • 2016
  • Sugar esters are valuable compounds composed of various sugars and fatty acids that can be used as antibacterial agents and emulsifiers in toothpaste and canned foods. For example, fructose fatty acid esters suppress growth of Streptococcus mutans, a typical pathogenic bacterium causing dental caries. In this study, fructose laurate ester was chosen as a target material and was synthesized by a transesterification reaction using Candida antarctica lipase B. We performed a solvent screening experiment and found that a t-butanol/dimethyl sulfoxide mixture was the best solvent to dissolve fructose and methyl laurate. Fructose laurate was synthesized by transesterification of fructose (100 mM) with methyl laurate (30 mM) in t-butanol containing 20% dimethyl sulfoxide. The conversion yield was about 90%, which was calculated based on the quantity of methyl laurate using high-performance liquid chromatography. Fructose monolaurate (Mr 361) was detected in the reaction mixture by high-resolution mass spectrometry. The inhibitory effect of fructose laurate on growth of oral or food spoilage microorganisms, including S. mutans, Bacillus coagulans, and Geobacillus stearothermophilus, was evaluated.

Synthesis and biodistribution of 18F-labeled α-, β- and ω-fluorohexadecanoic acid

  • Lee, Yun-Sang;Kim, Young Joo;Cheon, Gi Jeong;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2018
  • ${\omega}-[^{18}F]$-Fluorohexadecanoic acid (FHA) has been used for imaging of fatty acid metabolism of myocardium. To increase retention of radiolabeled fatty acid by blocking ${\beta}$-oxidation, methyl branched analogues have been used. In this experiment, we tried to synthesize 18F-labeled ${\alpha}-$, ${\beta}-$ and ${\omega}-FHA$ for imaging of the myocardial fatty acid metabolism. We synthesized ${\alpha}-$, ${\beta}-$ and ${\omega}$-mesylated methyl hexadecanoates and labeled with $^{18}F$ by reacting with $[^{18}F]$TBAF in acetonitrile at $80^{\circ}C$ for 10 min. Methyl ester group was removed by 1 M NaOH at $80^{\circ}C$ for 5 min. The yields of ${\alpha}-[^{18}F]$ and ${\omega}-[^{18}F]FHA$ were 25.5 and 45.5%, respectively [EOS]. However, ${\beta}-[^{18}F]FHA$ was not labeled at all due to a fast elimination reaction. The biodistribution study in ICR-mice showed that ${\omega}-[^{18}F]FHA$ has higher myocardial uptake and lower liver uptake than ${\alpha}-[^{18}F]FHA$. The electron-withdrawing effect of fluorine at ${\alpha}-$ position is believed to be the major factor affecting the biodistribution.

Evaluation of Physico-chemical Properties of Acrylic Resin Hydrogel and their Application to Transdermal Delivery System

  • Chung, Uoo-Tae;Choi, Seung-Man;Kang, Kee-Long;Kim, Nak-Seo;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 1995
  • Recently, many attempts have been made to use hydrogels of various polymers as delivery systems of various drugs and bioactive materials to prolong and control their phamacological activities. In this study, we have evaluated the physico-chemical properties of methacrylic acid-methyacrylic acid methyl ester copolymer 9Eudispert mv)m a acrylic resin hydorgel, and its application to transdermal delivery system. In the dissolution tests, the release rate of salicylic acid (SA) and sodium salicylate (SOd. SA) were faster than lidocain (LD) and lidocain-HCl(LD-HCl). As the concentration of Eudispert mv polymer increased, the extensibility of Eudispert mu hydrogel decreased, whereas the swelling ratio increased. The more NaOH and polymer concentration increased, the more osmotic pressure linearly increased. The skin permeation of Sod. SA, an acidic model drug, was remarkably enhanced by Eudispert mv hydrogel. All fatty acids, except for Sod. glycolate, dramatically increased the skin permeation flux in Eudispert mu hydrogel containing LD-Hcl, a basic model drug. Consequently, it is suggested that Eudispert mv hydrogel may be used as potential transdermal delivery vehicle.

  • PDF

Development of Gas Chromatography/Mass Spectrometry for the Determination of Essential Fatty Acids in Food Supplemental Oil Products

  • Ahn, Seonghee;Yim, Yoon-Hyung;Kim, Byungjoo
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.75-78
    • /
    • 2013
  • A gas chromatography/mass spectrometric (GC/MS) method was developed as a candidate reference method for the accurate determination of essential fatty acids (linoleic acid, ${\alpha}$- and ${\gamma}$-linolenic acids) in food supplemental oil products. Samples were spiked with three internal standards (stearic acid-$d_{35}$, $^{13}C_{18}$-linoleic acid, and $^{13}C_{18}$-${\alpha}$-linolenic acid). Samples were then subject to saponification, derivatization for methylation, and extraction by organic solvent. For GC/MS measurement, an Agilent HP-88 column, designed for the separation of fatty acid methyl esters, was selected after comparing with other columns as it provided better separation for target analytes. Target analytes and internal standards were detected by selected ion monitoring of molecular ions of their methyl ester forms. The GC/MS method was applied for the measurement of three botanical oils in NIST SRM 3274 (borage oil, evening primrose oil, and flax oil), and measurement results agreed with the certified values. Measurement results for target analytes which have corresponding isotope-labeled analogues as internal standard were calculated based on isotope dilution mass spectrometry (IDMS) approach, and compared with results calculated by using the other two internal standards. Results from the IDMS approach and the typical internal standard approach were in good agreement within their measurement uncertainties. It proves that the developed GC/MS method can provide similar metrological quality with IDMS methods for the measurement of fatty acids in natural oil samples if a proper fatty acid is used as an internal standard.