• Title/Summary/Keyword: Fatty acid metabolism

Search Result 569, Processing Time 0.027 seconds

Gamma fatty acid : A review (감마지방산 : 리뷰)

  • Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.446-458
    • /
    • 2008
  • Essential fatty acids (EFA) are fatty acids that must be obtained from the diet because they can not be biosynthesized by human or animals. Gamma fatty acids contain gamma-linolenic acid (GLA, 18:3n-6) and dihomo-gamma-linolenic acid (DHGLA, 20:3n-6) as intermediate metabolites of linoleic acid (LA, 18:2n-6), which is an EFA found in vegetable oils. GLA is an important essential fatty acid that is required by human and animals to function normally. Recently, studies have indicated that GLA may be an essential component of the cell membrane, as well as an active component of dietary supplements and medicine. GLA must beadministered through the diet because it is converted into DHGLA in the body quickly and completely. DHGLA is a key material involved in the metabolism of LA. GLA is biosysthesized by the rate limiting step of ${\Deltac}^6$-desaturase, which is an enzyme that desaturates LA, there by allowing it to be converted into DHGLA via chain elongation. In addition, DHGLA exerts bioactive effects via action as a precursor of eicosanoid series 1. Breast milk contains an abundant amount of GLA; however, GLA is also available directly in evening primrose oil, black currant seed oil, borage oil and hemp seed oil. In addition, GLA enriched animal and plant can be produced using biotechnology, and highly pure GLA can be extracted using supercritical fluids, such as supercritical carbon dioxide, which will allow economically feasible production of GLA for use in medicines.

A Role of Unsaturated Fatty Acid in Animal Reproductive Cells and Biology

  • Hwangbo, Yong;Kim, Hwa-Young;Lee, Yu-Rim;Lee, Seung Tae;Lee, EunSong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.2
    • /
    • pp.15-22
    • /
    • 2016
  • As a one of unsaturated fatty acid, polyunsaturated fatty acids (PUFAs) have multiple actions: as precursor of prostaglandins (PGs), steroid hormone synthesis and energy production in animal reproduction. PUFAs, which include omega-3 (n-3) and omega-6 (n-6), are derived from the diet and changed by diet, species, breed and season. The plasma membrane of spermatozoa in mammals contain various PUFAs. These composition of PUFAs regulate the membrane fluidity and cause lipid peroxidation via generation of reactive oxygen species (ROS). Induced lipid peroxidation by ROS decreased viability and motility of spermatozoa, and it is reduced by addition of antioxidant and low concentration of PUFAs. Because oocytes of animal have a high lipid components, process of oocyte maturation and embryo development are influenced by PUFAs. In in vitro study, oocyte maturation, embryo development, intracellular cAMP and MAPK activity were increased by treatment of n-3 ${\alpha}$-linolenic acid (ALA) during maturation, whereas n-6 linoleic acid (LA) negatively influenced. Also, inhibition of fatty acid metabolism in oocyte influenced blastocyst formation of cattle. PGs are synthesized from PUFAs and various PUFAs influence PGs via regulation of PG-endoperoxide synthase (PTGS). Steroid hormone synthesis from cholesterol is regulated by expression of steroid acute regulator (StAR) protein and mRNA. Exogenous n-3 and n-6 PUFAs altered sex hormone in animal through stimulate or inhibit StAR activity. Because PUFAs altered PG and steroid hormone synthesis, follicular development was influenced by PUFAs. This effect of unsaturated fatty acid could provide information for improvement of reproductive ability in animals.

Physio-chemical studies on the after-ripening of hot pepper fruits -(Part 3) Changes in lipids- (신미종(辛味種)고추의 추숙(追熟)에 관(關)한 생리화학적(生理化學的) 연구(硏究) -제3보(第3報) 지질(脂質)의 변화(變化)-)

  • Lee, Sung-Woo
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.35-41
    • /
    • 1971
  • Changes in fatty substance of hot pepper fruit during the after-ripening period were studied for both neutral and polar fatty substance. The results obtained from these studies are tabulated as follows; 1. Total fatty substance decreased as the after-ripening proceeded, while neutral fatty substance was least during the climacteric period. Polar fatty substance showed sudden drop in the amount during the post-climacteric period. 2. Fatty acid composition in neutral fatty substance showed that there is decrease in linoleic acid during the post-climacteric period, and in myristic acid and oleic acid respectively during the climacteric period. Stearic acid contents also drops sharply as after-ripening proceeds. 3. Value for saturates to unsaturates in and the amount of neutral fatty substance became least during the climacteric period, indicating that there is relationship between metabolism of neutral fats and climacteric rise. 4. Fatty acid composition of polar fatty substance showed that there is decrease in linoleic acid when after-ripening takes place whereas linolenic acid increases. These became reverse in the amounts after the climacteric period, suggesting that these changes may be useful to indicate true maturity of the fruits.

  • PDF

Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

  • Cho, Sungback;Hwang, Okhwa;Park, Sungkwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1362-1370
    • /
    • 2015
  • This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

The Effects of Metal Compounds on the Phospholipid Metabolism in Bacillus subtilis;

  • Ma, Hye-Young;Jung, Kyung-Suk;Jang, Jae-Seon;Lee, Chong-Sam
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 1997
  • The synthesis of phospholipid and the composition of fatty acid in B. subtills treated with copper chloride (10 ppm), manganese chloride (100 ppm), and nickel chloride (50 ppm) during the culture were analyzed to compare with the control. The levels of growth, total lipid, phosphatidylethanolamine(PE), phosphatidylcholine(PC), phosphatidylglycerol(PG), and cardiolipin(CL) in B. subtilis treated with copper chloride were decreased predominantly. But, the biosynthesis of phosphatidylinositol(PI) was not affected by the metal compounds. The major fatty acids utilized for the formation of phospholipid were palmitic acid(average 19.00%) and stearic acid(average 9.88%) in the control. In the copper chloride treatment, however, palmitic acid (average 17.35%) and oleic acid(average 15.99%) made use of the major fatty acid during the biosynthesis of phospholipids. It was showed that oleic acid(average 17.87%) and stearic acid (average 13.78%) in thee manganese chloride treatment, and palmitic acid(average 15.00%) and myristic acid(average 14.24%) in the nickel chloride treatment were utilized.

  • PDF

Alpha-Linolenic Acid: It Contribute Regulation of Fertilization Capacity and Subsequent Development by Promoting of Cumulus Expansion during Maturation

  • Lee, Ji-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.297-307
    • /
    • 2018
  • The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on cumulus expansion, nuclear maturation, fertilization capacity and subsequent development in porcine oocytes. The oocytes were incubated with 0, 25, 50, and $100{\mu}M$ ALA. Cumulus expansion was measured at 22 h, and gene expresison and nuclear maturation were analyzed at 44 h after maturation. Then, mature oocytes with ALA were inseminated, and fertilization parameters and embryo development were evaluated. In results, both of cumulus expansion and nuclear maturation were increased in $50{\mu}M$ ALA groups compared to control groups (p<0.05). However, expression of gap junction protein alpha 1 (GJA1, cumulus expansion-related gene), delta-6 desaturase (FADS1, fatty acid metabolism-related gene), and delta-5 desaturase (FADS2) mRNA in cumulus cells were reduced by $50{\mu}M$ ALA treatment (p<0.05). Cleavage rate was enhanced in 25 and $50{\mu}M$ ALA groups (p<0.05), especially, treatment of $50{\mu}M$ ALA promoted early embryo develop to 4 and 8 cell stages (p<0.05). However, blastocyst formation and number of cells in blastocyst were not differ in 25 and $50{\mu}M$ ALA groups. Our findings show that ALA treatment during maturation could improve nuclear maturation, fertilization, and early embryo development through enhancing of cumulus expansion, however, fatty acid metabolism- and cumulus expansion-related genes were down-regulated. Therefore, addition of ALA during IVM of oocytes could improve fertilization and developmental competence, and further studies regarding with the mechanism of ALA metabolism are needed.

Effects of Feeding the Mixture of Linseed and Sunflower Seed Oil on the Fatty Acid Composition of Serum Lipoprotein in Dietary Hyperlipidemic Rats (아마인유와 해바라기 종자유의 혼합급이가 식이성 고지혈증 흰쥐 혈청 지단백의 지방산조정에 미치는 영향)

  • 최운정;김한수;정효숙;김군자;서인숙;정승용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • This study was carried out to investigate the effect of the feeding mixture of linseed oil, rich in n-3 PUFA and the sunflower seed oil, rich in n-6 PUFA on the lipid metabolism in the dietary hyperlipidemic rats. After male Sprague-Dawley rats were induced hyperlipidemia by feeding the diet containing lard, butter and cholesterol for 3 weeks, then they were fed with the diet containing lard 3 .0% and butter 12.0% for control, the mixture in different proportion of both linseed oil and sunflower seed oil and antihyperlipidemic drugs for 2 weeks. Analysis of the fatty acid composition of the serum lipoprotein fractions showed following results. In the fatty acid composition of serum lipoprotein , the proportion of C18:2 was dominant in all fractions, C20:5 in LDL and HDL fraction and C22:6 in chylomicron fraction. The ratio of n-3P/n-6P tended to increase gradually as it of the test lipid increased in groups 5 to 9 group and was affected by the fatty acid composition of the test lipids.

  • PDF

Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

  • Liu, Lei;Li, Chunyan;Fu, Chunyan;Li, Fuchang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1748-1755
    • /
    • 2016
  • An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H.;Wang, Y.C.;Kuo, C.F.;Cheng, W.M.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1451-1456
    • /
    • 2005
  • To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.