• 제목/요약/키워드: Fatigue strength ratio

검색결과 236건 처리시간 0.025초

Fatigue Strength Assessment of TLP Tendon Porch Using API 2W Gr.50 Steel

  • Im, Sung-Woo;Seo, Young-Seok;Lee, Joo-Sung
    • Journal of Ship and Ocean Technology
    • /
    • 제11권1호
    • /
    • pp.25-35
    • /
    • 2007
  • This paper is concerned with the fatigue strength assessment of tendon porch found which is categorized as the special structural member in TLP. Large-scale tendon porch specimens have been designed and fabricated with API 2W Gr.50 steel recently produced by POSCO. Fatigue test has been carried out for three tendon porch specimens under various load level. Fatigue strength has been evaluated based on the nominal stress range and the results are compared with the fatigue design curve of DnV RP-C203. From the present experimental study, it has been found that the porch specimens satisfy the fatigue design rule although test was carried out under the positive stress ratio. It can be, therefore, said that the API 2W steel produced by POSCO possess sufficient fatigue strength.

콘크리트 포장 피로실험 데이터의 쪼갬인장 피로특성 (Split Tension Fatigue Characteristics Analysis of Fatigue Tests Data for Concrete Pavements)

  • 김동호;김성환;윤병성;이봉학
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.139-147
    • /
    • 2003
  • The purpose of this study was to investigate and analyze the fatigue test data of pavement concrete. The static strength tests were carried out to check the compressive strength, flexural strength, and split tension strength at 56 days in order to minimize strength variation effect during test. The specimens were fabricated at twelves sections at a construction site of highway. The stress level and stress ratio of fatigue test were determined from static test results. The results are as follow: The flexural strength at 28 days mostly satisfied the criterion for design, but the compressive strength at 28 days were slightly below the criterion even though it satisfied at 56 days. The fatigue limit was 2 million cycles if the specimen was not failed to that cycles. The S-N curves were developed from the fatigue test results at each stress levels and each stress ratio. Then, the fatigue life of pavement concrete at a given stress level and fatigue strength of pavement concrete could be derived from these curves. Analysis using method No.2 was more acceptable because resulting of comparison and analysis using method No.2 was presented 2 sections were presented $R^2$ < 0.7, and other 2 sections were presented 0.7 < $R^2$ < 0.8, and the others 8 sections were $R^2{\geq}0.8$.

  • PDF

구상흑연주철재의 흑연에 의한 피로강도의 평가 (Evaluation of Fatigue Strength by Graphite in Ductile Cast Iron)

  • 이경모;윤명진;이종형
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.214-221
    • /
    • 2003
  • In this study, based on the effect of the interaction of fracture mechanics by graphite and fatigue limit phenomena of the microscopic observation various matrix structure, spheroidal ratio, size of graphite and distribution etc. parameters containd with Ductile Cast Iron. Therefore, in this study, different ferrite-pearlite matrix structure and spheroidal ratio of graphite of 70%, 80% and 90%, GCD40, GCD45-1 and GCD45-2 series and three different ferrite-pearlite matrix structure, GCD 45-3, GCD 50, GCD 60 series, all of which contain more than 90% spheroidal ratio of graphite, were used to obtain the correlation between mean size of spheroidal graphite and fatigue strength. (1) 73% pearlite structure had the highest fatigue limitation while 36% pearlite structure had the lowest fatigue limitation among ferrite-pearlite matrix. the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 10%, distribution range of fatigue life was small in same stress level. (2) (equation omitted) of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of (equation omitted) may be used as a guideline for the control of inclusion size in the steelmaking processes.

TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교 (Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite)

  • 조영직;박영철
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향 (Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel)

  • 김종범;황수경;김범준;이종훈;박창규;이형연;김문기;임병수
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.271-279
    • /
    • 2012
  • 9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

구상화율에 의한 구상 흑연주철재의 피로강도의 정량적 평가 (Quantitative Evaluation of Fatigue Strength by Spheroidal of Graphite in Ductile Cast Iron)

    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.36-41
    • /
    • 1999
  • Although the problems of defects and nonmetallic inclusion in metal fatigue are very complicated it is particularly important to view these problems from the perspective that defects and inclusions are virtually equivalent to small cracks. This concept will help us to understand various fatigue phenomena caused by graphite of Ductile cast iron. Therefore in this study different ferrite-pearlite matrix structure and pheroidal ratio of graphite of 70%, 80% and 90% GCD40 , GCD45-2 series have been carried out rotary bending fatigue test estimated the maxi-mum size of graphite investigated correlation. It was concluded as follows : (1) in ductile cast iron which have various spheroidal ratio of graphite the fatigue limit C series of 90% spheroidal ratio of graphite is the highest. While A series of 70% spheroidal ratio of graphite is the lowest (2) fatigue limit was predicted by vickers hardness(Hv) of matrix {{{{ SQRT {area } }}}} of maximum size graphite inputting Murakami and Endo's formula.

  • PDF

과소철근콘크리트 단수보의 피로거동 (Fatigue Behavior of Simply Supported Under Reinforcde Concrete Beams)

  • 변근주;김영진;노병철;장세창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 1991
  • In recent years, conskderable interest has developed in the fatigue strength of reinforced concrete members subjected to cyclic loading for the wide-spread adoption of ultimate strength design poecedures, the higher strength materials and the new recognition of the effect of repeated loading on structures such as bridges, concrete pavementes and offshore structures. In this study, a series of experiments is carried out to investigate the fatigue characteristics of deformed bars and underreinforced simply supported beams. The 69 reinforcing bar specimens with grade SD30 and designation of D16, D22, D25, and 24 beam specimens with D16 bars are prepared for this study. From these series of tests, it is found that I) a decrease of the bar deameter result in increased fatigue life, ii) the fatigue life of the bars embedded as main reinforcement within a concrete is more than that of bars in the air. iii) the fatigue strength at 2$\times$106 cycles of beams with steel ratio of 0.61% and 1.22% is 64.5% and 63.2% of the yielding strength, restectively. It is concluded that the low steel ratio has no significant effect on fatigue strength of underreinforced beams and the fatigue life of underreinforced concrete beams can be predicted conservatively by the fatigue life lf reinforcing bar.

  • PDF

차체접합과 관련한 접합 강도 평가 (Strength Evaluation of Adhesive Bonded Joint for Car Body)

  • 이강용;김종성;공병석;우형표
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.143-150
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for electrical vehicle body has been performed through single lap joint tests with the design parameters such as joint style, adherend, bonding overlap length and bonding thickness. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the stress ratio zero value. It is experimentally observed that fatigue strength of joint increases for the increase of overlap length. The combinations of Al-Al and Al-FRP adherends show that fatigue strength of joint is hardly changed for the increase of bonding thickness, but FRP-FRP adherend specimen shows that fatigue strength of joint increases after decreases for the increase of bonding thickness. Al-Al adherend specimen has much higher fatigue length than Al-FRP and FRP-FRP adherend specimens. Riveting at adgesive bonded joint gives little effect on fatigue strength.

Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향 (Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy)

  • 김경현;김정대;김인배
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

상.하수도 배관재 용접부의 하중에 따른 피로강도 평가 (Evaluation of Fatigue Strength of Weld According to Load of Piping materials for Water Supply and Drainage)

  • 박경동;유형주
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.224-225
    • /
    • 2005
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. In this study, it was investigated about endurance and fatigue crack propagation rate of according to stress ratio of SMAW commonly using for welding structures in present. Fatigue crack propagation rate(da/dN) of low load(R=0.1) was lower than of high load(R=0.6) for piping weld. And in stage I, ${\Delta}$Kth, the threshold stress intensity factor of the weld under heavy load is higher than under small load. Fatigue life shows more improvement in the weld of stress ratio R=0.l than in the weld of stress ratio R=0.6.

  • PDF