Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.4.271

Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel  

Kim, Jong Bum (Korea Atomic Energy Research Institute)
Hwang, Soo-Kyung (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Kim, Bum Joon (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Lee, Jong Hoon (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Park, Chang Gyu (Korea Atomic Energy Research Institute)
Lee, Hyeong Yeon (Korea Atomic Energy Research Institute)
Kim, Moon Ki (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Lim, Byeong Soo (Material Strength & Computational Bioengineering Lab, School of Mechanical Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.4, 2012 , pp. 271-279 More about this Journal
Abstract
9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.
Keywords
fatigue crack growth; high temperature fatigue; G91; stress ratio; branch crack; striation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Kim, Elevated temperature properties of ferritic/martensitic steels for application to future nucear reators, p.1, KAERI, Korea (2005).
2 B. Vitalis, Advances in Materials Technology for Fossil Power Plants Proceedings form the Fifth International Conference, p. 969, Florida, USA (2007).
3 D. C. Yuk, KJPE 1, 17(2005).
4 MEST, White paper on nuclear safety, p.5, KINS. Korea (2007).
5 A. K. Khare, Ferritic Steels For High-temperature Applications, p.1983, America Society for Metals, USA (1981).
6 W. G. Kim, J. Y. Park, S. N. Yin, D. W. Kim, J. Y. Park, and S. J. Kim, Korean J. Met. Mater. 49, 275 (2011).   DOI
7 W. G. Kim, S. H. Kim, and C. B. Lee, Met. Mater. Int. 17, 497 (2011).   DOI   ScienceOn
8 Use of 10CrMoVNb91(P91/T91)for power station and boiler, Mannesmann Company, Duisburg, Germany (1995).
9 S. C. Chetal, V. Balasubramaniyan, P. Chellapandi, P. Mohanakrishnan, P. Puthiyavinayagam, C. Pillai, S. Raghupathy, and T. Shanmugham, Nucl. Eng. Des. 236, 852 (2006).   DOI   ScienceOn
10 D. H. Hahn, J. Chang, Y. I. Kim, C. B. Lee, S. O. Kim, J. H. Lee, K. W. Ha, B. H. Kim, and Y. B. Lee, NET 41, 427 (2009).   DOI   ScienceOn
11 D. Chen, C. J. Gilbert, X. F. Zhang, and R. O. Ritchie, Acta Mater. 48 (2000).
12 C. Y. Jeong and S. W. Nam, J. Kor. Inst. Met & Mater. 38, 414 (2000).
13 R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, JOHN WILEY & SONS, INC, p.201, USA (1995).
14 K. Bhanu, S. Rao, H. Schuster, and G. R. Halford, Metall. Mater. Trans. A, 27, 851 (1996).   DOI   ScienceOn
15 G. E. Dieter, Mechanical Metallurgy, p.400, Mc Graw Hill, USA (1988).
16 J. Zhao, Y. Miyashita, and Y. Mutoh, Int. J. Fatig. 22, 66 (2000).
17 J, Aktaa and M. Lerch, J. Nucl. Mater. 353, 101 (2006).   DOI   ScienceOn
18 H. Ghonem, T. Nicholas, and A. Pineau, FFEMS. 16, 565 (1993).
19 P. K. Liaw, A.Sexena, V. P. Swaminathan, and T. T.Shih, Metall. Mater. Trans A 14, 1631 (1982).
20 G. Onofrio, G. A. Osinkolu and M. Marchionni, Int. J. Fatig. 23, 887 (2001).   DOI   ScienceOn
21 G. Onofrio., G. A. Osinkolu, and M. Marchionni, Int. J. Fatig. 26, 203 (2004).   DOI   ScienceOn
22 H. B. Jeon and W. J. Park, KSME Spring Conference Proceeding, p. 691, Korea (2008).
23 C. Laird, ASTM STP 14, 131 (1967).
24 J. C. McMillan and R. M. N. Pelloux, ASTM STP 415, 505 (1967).
25 C. Bathias and R. M. Pelloux, Met. Trans. 4, 1265 (1973).   DOI
26 N. A. Fleck, ASTM STP. 924,157 (1988).
27 S. Suresh, Eng. Fract. Mech. 18, 577 (1983).   DOI   ScienceOn
28 W. M. Tomas, Eng. Fract. Mech. 23,1015 (1986).   DOI   ScienceOn
29 O. Vadar, Eng. Fract. Mech. 30, 325 (1988).
30 G. R. Chanani, Eng. Fract. Mech . 9, 65 (1977).   DOI   ScienceOn
31 S. H. Song and Y. K. Kwon, J. of the KSPE. 3, (2002).
32 S. H. Song and Y. K. Kwon, APCFS'93, p. 1141, Ibaraki. Japan (1993).