• 제목/요약/키워드: Fatigue loading variation

검색결과 58건 처리시간 0.021초

교량 피로설계의 동시재하계수에 관한 연구 (A Study on the Simultaneous Loading Factors for the Fatigue Design of Bridges)

  • 이동욱;서원찬;최재원
    • 한국강구조학회 논문집
    • /
    • 제12권2호통권45호
    • /
    • pp.151-165
    • /
    • 2000
  • 교량에 통행하는 차량의 대형화와 통행교통량의 급격한 증가로 인하여 교량부재에서 피로손상이 많이 보고되고 있다. 교량부재의 피로손상을 방지하고, 안전을 유지하기 위해서 합리적인 피로조사를 실시하여야 한다. 교량의 피로설계에서는 차량 1대만 재하 시키는 방법을 채택하고 있으나, 실제 교량의 상부에 차량이 1대만 통과하는 일은 거의 없다. 통상 교량의 상부에는 복수의 차량이 동시에 재하되므로 합리적인 피로설계를 위해서는 동시재하의 영향을 고려하여야 한다. 본 논문에서는 도로교를 통행하는 차륜하중에 대해 선형중첩법과 교통류의 몬테카를로 시뮬레이션에 의한 변동응력해석을 실시하고, 피로 손상도를 구함으로써 통행차량의 차축하중에 대한 동시재하의 영향에 대해 연구하였다.

  • PDF

White etching layer의 두께변화에 따른 접촉피로수명 평가 (Contact Fatigue Analysis of White Etching Layer according to Thickness Variation)

  • 서정원;권석진;전현규;이동형
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length)

  • 정의효
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints)

  • 장동일;이성욱
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.

과대하중변화가 축방향 원공결함의 피로균형거동에 미치는 영향 (The Effect of Overload Variation on the Fatigue Crack Behavior at the Axial Direction Hole Defects)

  • 송삼홍;김민철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.829-832
    • /
    • 1997
  • It is difficult to explain the effects of complex variable loading experienced by the machine and the structure only with the studies of the single-overload itself. Hence, it is thought that the variation of overload-holding time are required to explain the effects more clearly. The effects of the overload were analyzed by means of the crack retardation, and the fractography on retardation zone. A characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force. Rotary bending fatigue tests were performed with the circular shaft which has two hole defects.

  • PDF

Ti-6Al-4V 재의 UNSM 처리에 의한 피로특성변화 - 회전굽힘 피로시험과 축하중 인장압축 피로시험 비교 - (Variation of Fatigue Properties in Nanoskinned Ti-6Al-4V - Rotating Bending and Axial Loading Tension-Compression Cycle -)

  • 서민수;편영식;서창민
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.443-449
    • /
    • 2012
  • Ti-6Al-4V 재에 다양한 표면처리방법을 통하여 나노스킨화된 피로시험편을 제작하고 회전굽힘피로 시험과 축하중 인장압축피로시험을 수행하였다. 특히 S-N 곡선에서 초음파나노표면개질(UNSM)법은 국내특허기술로 다른 처리법들보다 우수한 결과를 보였고, UNSM 처리된 직경 5 mm 재는 6 mm 티타늄재를 대치 가능할 성능을 얻었다. UNSM 처리된 $10^6$ 사이클 이상의 장수명영역에서 피로강도가 크게 향상되는 시험결과를 얻었다. 균열발생 패턴의 분석을 통하여 Ti-6Al-4V 재는 응력의 작용형태에 따라 표면균열발생형(surface originating crack type)과 내부균열발생형(interior originating crack type)인 어안균열(fish eye crack)이 발생하는 메커니즘을 분석하였다.

고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구 (A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress)

  • 김종성;김철;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF

국내화강석재의 피로변형거동에 관한 연구 (A Study on the fatigue deformation behavior of granitic stone in Korea)

  • 김재동;정윤영;장보안
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.144-156
    • /
    • 1996
  • The deformation behaviors under uniaxial compressive cyclic loading were investigated for fresh rocks and freeze-thaw cycled samples. The Pocheon granite which is one of the most popular building stone in Korea was selected for tests. 0.5 Hz and 50% of dynamic strength were used as test conditions for frequency and fatigue span, respectively. For freezethaw procedure, sample were frozen for 3 hours under the temperature of -2$0^{\circ}C$ and then followed 3 hours thawing under the temperature of +2$0^{\circ}C$. Twenty seven samples were used as untreated and seventy three for freeze-thaw samples. No failure occurred up to 15000 cycles at the stress level of 60% of dynamic strength, indicating that the lowest strees level for fatigue failure may be around 60% of dynamic strength. Permanent strain and damping capacity curves show that there were three stages when rock behaves like under creep. Young's moduli were increased and Possion's ratios were decreased with the increase of the number of cycles. Possion's ratios varied more rapidly than Young's moduli did with the increase of the number of cycles. This may represent that most microcracks developed by fatigue stress are parallel to the axis of loading. The deformation behavior of freeze-thaw cycled samples were almost the same as that of untreated samples. However, the result of freeze-thaw cycled samples showed lower regression constant, indicating that the physical durability of rock is much lowered because of cyclic temperature variation.

  • PDF

변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 - (A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading)

  • 송삼홍;권윤기
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF