• Title/Summary/Keyword: Fatigue lifetime

Search Result 150, Processing Time 0.025 seconds

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

Estimation of Fatigue Crack Growth using Gamma Process Model (감마과정 모델을 적용한 피로균열 진전거동의 예측)

  • Park, Sung Ho;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1245-1256
    • /
    • 2014
  • The physical nature of fatigue shows the considerable amount of scatter from intrinsic and extrinsic factors. In this study, some degradation models, such as the gamma process model, were reviewed in terms of uncertainties associated with the continuous, gradual, and monotonic nature of fatigue crack growth. Statistically varying fatigue crack growth data obtained from Lu and Meeker were used as an example to demonstrate the use of the gamma process model. This model can describe the condition and lifetime as statistical distribution curves whose shapes vary with cycles. From the skewness of the statistical distribution curves, it was confirmed that the median is suitable for being considered as the expected life. The use of the gamma process model enables the optimum replacement period and percentile life to be employed as criteria for preventive maintenance policy.

Corrosion Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식 피로신뢰성 기반 생애주기비용 분석)

  • Cho, Hyo-Nam;Jeon, Hong-Min;Sun, Jong-Wan;Youn, Man-Keun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.107-113
    • /
    • 2008
  • As it recently appears that LCC (Life Cycle Cost) analysis may be considered as an essential method for economic evaluation of infrastructures. Many researches have been made to assess LCC of each facility based on reasonable methods. However, expected maintenance repair cost must be reasonably estimated to enhance the reliability of LCC analysis through systematic and rational methods. This study is intended to propose a rational approach to reliability-based LCC analysis of high-speed railway steel bridges considering lifetime corrosion and fatigue damage. However in Korea, since high speed railway steel bridges are only recently constructed, no direct statistical data are available for the account of the maintenance cost and thus their maintenance characteristics are not clear yet. In this paper, for the assessment of expected maintenance/repair cost, the fatigue system reliability analysis incorporating the corrosion effect is proposed by considering the corrosion and fatigue damage using measured data of high speed railway steel bridges. A model proposed by Rahgozar, of at for fatigue notch factor considering the corrosion effect is used in order to incorporate the corrosion effect into the fatigue strength reduction and S-N curve. Finally, the effectiveness of LCC model proposed for high-speed railway steel bridges is demonstrated by a numerical example.

Development of Integrated Design System for Mechanical Rubber Components (고무류 기계부품 통합설계시스템 개발)

  • Woo, Chang-Su;Kim, Wan-Doo;Kim, Young-Gil;Shin, Wae-Gi;Lee, Seong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1045-1050
    • /
    • 2010
  • Fatigue analysis and lifetime evaluation are very important in design procedure for assuring the safety and reliability of rubber components for mechanical systems. Till recently, the technology for the design, analysis, and evaluation of rubber products was required to manufacture rubber products with high quality, fidelity, and reliability. However, in the rubber-manufacturing companies in Korea, the processes of compound mixing, manufacturing of rubber products, and improvement of rubber properties are based on the trial-and-error method and experience. The objectives of this study are to establish methods for testing rubber materials, to develop a database of the properties of rubber materials, to evaluate the performance of rubber components, and to develop a system for predicting fatigue life. A method to predict fatigue-life of rubber components was proposed; in this method, the finite-element analysis and fatigue damage parameter as determined from a fatigue test are incorporated.

Nondestructive Techniques for Characterization of Microstructural Evolution during Low Cycle Fatigue of Cu and Cu-Zn Alloy (Cu와 Cu-Zn 합금의 저주기피로 동안 발달한 미세조직 평가를 위한 비파괴기술)

  • Kim, Chung-Seok;Jhang, Kyung-Young;Hyun, Chang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The object of this study is to evaluate and discriminate nondestructively the dislocation substructures of Cu and Cu-Zn alloy subjected to the low-cycle-fatigue. The ultrasonic wave velocity, electrical resistivity and positron annhilation lifetime(PAL) were measured to the nondestructive testing. Cyclic fatigue test of Cu and Cu-Zn alloy with much different stacking fault energies was conducted and the correlations between dislocation behavior and nondestructive parameters were studied. Dislocation cell substructure was developed in Cu, while planar array of dislocation structure was developed in Cu-35Zn alloy only increasing dislocation density with fatigue cycles. Decrease in ultrasonic wave velocity, increase in electrical resistivity and PAL were shown because of the development of lattice defects, dislocations and vacancies, by cyclic fatigue at room temperature. In contrast to Cu-Zn alloy of the planar-array dislocation substructure showing continuous changes in the nondestructive parameters, it does not make any noticeable changes in the nondestructive parameters after the evolution of dislocation cell substructure in Cu.

Characterization and Fatigue Life Evaluation of Rubber/Clay Nanocomposites (고무-점토 나노복합체 물성 및 피로내구성 평가)

  • Woo, Chang-Su;Park, Hyun-Sung;Joe, Deug-Hwan;Jun, Young-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1199-1203
    • /
    • 2011
  • Nanocomposites were prepared through the compounding of rubber and clay. Measurements of the static and dynamic mechanical properties of different compositions over a temperature range $70-100^{\circ}C$ showed that the mechanical properties of these rubber/clay nanocomposites are superior to those of existing rubber materials. In this study, by using the parameter of the maximum Green.Lagrange strain appearing at certain locations, the relationship between fatigue life and maximum Green.Lagrange strain, and the correlations between test-piece tests and bench tests of actual rubber components are proved. In order to predict the fatigue life of rubber components at the design stage, a simple procedure of life prediction is suggested. The predicted fatigue lives of the rubber engine mounts agree fairly well with the fatigue lives determined experimentally.

Fatigue Evaluation for the Socket Weld in Nuclear Power Plants

  • Choi, Young Hwan;Choi, Sun Yeong;Huh, Nam Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.216-221
    • /
    • 2004
  • The operating experience showed that the fatigue is one of the major piping failure mechanisms in nuclear power plants (NPPs). The pressure and/or temperature loading transients, the vibration, and the mechanical cyclic loading during the plant operation may induce the fatigue failure in the nuclear piping. Recently, many fatigue piping failure occurred at the socket weld area have been widely reported. Many failure cases showed that the gap requirement between the pipe and fitting in the socket weld was not satisfied though the ASME Code Sec. III requires 1/16 inch gap in the socket weld. The ASME Code OM also limits the vibration level of the piping system, but some failure cases showed the limitation was not satisfied during the plant operation. In this paper, the fatigue behavior of the socket weld in the nuclear piping was estimated by using the three dimensional finite element method. The results are as follows. (1) The socket weld is susceptible to the vibration if the vibration levels exceed the requirement in the ASME Code OM. (2) The effect of the pressure or temperature transient load on the socket weld in NPPs is not significant because of the very low frequency of the transient during the plant lifetime operation. (3) 'No gap' is very risky to the socket weld integrity for the specific systems having the vibration condition to exceed the requirement in the ASME OM Code and/or the transient loading condition. (4) The reduction of the weld leg size from $1.09*t_1$ to $0.75*t_1$ can affect severely on the socket weld integrity.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior

  • Lee, Dong Heon;Kang, Nam Kyu;Lee, Kee Sung;Moon, Heung Soo;Kim, Hyung Tae;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • This study investigates changes in the mechanical behavior, such as changes in indentation load-displacement curve, wear resistance and contact fatigue resistance of thermal barrier coatings (TBCs) by thermal cycling test and thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/superalloy are prepared; the highest temperature applied during thermal durability test is $1350^{\circ}C$. The results indicate that the porous TBCs have relatively longer lifetime during thermal cycling and thermal shock tests, while denser TBCs have relatively higher wear and contact fatigue resistance. The mechanical behavior is influenced by sintering of the TBCs by exposure to high temperature during tests.

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.