• Title/Summary/Keyword: Fatigue life cycles

Search Result 215, Processing Time 0.03 seconds

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

화력발전소 증기터빈용 12Cr 강의 저주기 피로거동 (Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine)

  • 강명수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.

아연도금 강판의 점용접재의 피로균형에 관한 연구 (Fatigue Behavior of the Single Spot Welded Joint of Zinc Galvanized Steel Sheets)

  • 서창민;강성수;오상표
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.21-34
    • /
    • 1992
  • The behavior of fatigue crack growth in the single spot welded joint of zinc galvanized steel sheets was studied experimentally and analytically based on fracture mechanics. Axial tension fatigue tests were carried out with the BSxGAB specimen that the bare plane(GAB) of monogalvanized steel sheet was spot welded to the double thickness bare steel sheet(BS), and with the GAxGAB specimen that the galvanized plane (GA) was spot welded to the equal thickness bare plane (GAB) 1. The relation between maximum stress intensity factor, K sub(max) and the number of cycles to failure, N sub(f) has shown a linear relation on log-log plot in the spot weld of the zinc galvanized steel sheet. 2. The fatigue strength of BSxGAB specimens is about 23% higher than that of GAxGAB specimens at the fatigue strength of $1\times10^6$ cycles. And the fatigue life of BSxGAB specimens at the same load range increases 6~9 times higher than that of GAxGAB specimens. 3. The general tendency at the angle of bending($\theta$) in an applied load has changed rapidly at the initial 20% of its life. After then, it has changed slowly. The change at the angle of bending has increased linearly as the load range increases. 4. It has shown a linear relation between the location ratio of initiation ${\gamma}$ and fatigue life $N_f$ on the semi-log graph paper. Here $\gamma$ means that the crack distance between main crack and sub-crack, 2L is divided by the nugget diameter, 2r. $\gamma=a{\cdot}log N_f+n$ (where a and n are material constant.)

  • PDF

Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동 (Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel)

  • 오용준;박중철;양원존
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

대칭위치에 존재하는 미소원공결함의 깊이변화가 SM20C의 피로균열거동에 미치는 영향 (The Effect of Fatigue Crack Behavior on the Variable Depth of Micro Hole Defects in SM20C at the Symmetric Position)

  • 송삼홍;김성태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.856-860
    • /
    • 2002
  • The main objective of this study is to consider the effect of fatigue crack behavior on the variable depth of micro hole defects in SM20C at the symmetric position. The fatigue crack propagation test is performed by rotary bending fatigue test machine. The relationship between crack length(2a), cycles(N) and crack growth rate(da/dN) are investigated in this study. The result from the rotary bending fatigue test under the applied stress at 250MPa turned out that the fatigue life illustrated almost constant when the depth of symmetric micro hole deflects is both part A and B at the hope depth(h) = 0.5mm.

  • PDF

Al-Si-Ca 합금 폼의 피로 거동에 대한 두께 효과 (Thickness Effect on Compressive Fatigue Behavior of Al-Si-Ca Alloy Foam)

  • 김일현;마이눌;김엄기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.179-182
    • /
    • 2007
  • The compressive fatigue tests on the closed cell Al-Si-Ca alloy foams with two different thicknesses were performed using a load ratio of 0.1. The quasi-static and cyclic compressive behaviors were obtained respectively. The fatigue stress-life (S-N) curves were evaluated from the obtained cyclic compressive behaviors. S-N curves were presented for the onset of progressive shortening. It turned out that the fatigue strength showed higher value for the thicker foam and the onset of shortening of thinner foam took place earlier. The crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting.

  • PDF

SM490A 재질 필렛 용접시편의 피로수명과 용접부 피로파단시 스트레인 변화 연구 (A study on the fatigue life and the change of the strain during the fatigue fracture on the fillet welded specimens of SM490A)

  • 김재훈;구병춘
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.345-349
    • /
    • 2004
  • This study investigates the fatigue lives of SM490A material(base metal) specimens and fillet weld specimens, which are made same material and weld method for the railway vehicle. These fatigue lives have a difference, the fatigue lives of weld specimen are shorter than those of base metal. We measured the strains on the weld positions of the specimens during the fatigue test for investigation of crack initiation and crack growth. In these result, we could find the information of the crack initiation position on weld bead and the history of crack growth. Also we knew that the fatigue crack initiation cycles and the changes of the strain which were affected the fractured surface roughness and morphology.

과소철근콘크리트 단수보의 피로거동 (Fatigue Behavior of Simply Supported Under Reinforcde Concrete Beams)

  • 변근주;김영진;노병철;장세창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 1991
  • In recent years, conskderable interest has developed in the fatigue strength of reinforced concrete members subjected to cyclic loading for the wide-spread adoption of ultimate strength design poecedures, the higher strength materials and the new recognition of the effect of repeated loading on structures such as bridges, concrete pavementes and offshore structures. In this study, a series of experiments is carried out to investigate the fatigue characteristics of deformed bars and underreinforced simply supported beams. The 69 reinforcing bar specimens with grade SD30 and designation of D16, D22, D25, and 24 beam specimens with D16 bars are prepared for this study. From these series of tests, it is found that I) a decrease of the bar deameter result in increased fatigue life, ii) the fatigue life of the bars embedded as main reinforcement within a concrete is more than that of bars in the air. iii) the fatigue strength at 2$\times$106 cycles of beams with steel ratio of 0.61% and 1.22% is 64.5% and 63.2% of the yielding strength, restectively. It is concluded that the low steel ratio has no significant effect on fatigue strength of underreinforced beams and the fatigue life of underreinforced concrete beams can be predicted conservatively by the fatigue life lf reinforcing bar.

  • PDF

랜덤하중하의 GFRP의 피로누적손상거동과 피로수명예측 (The Fatigue Cumulative Damage and Life Prediction of GFRP under Random Loading)

  • 김정규;심동석
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3892-3898
    • /
    • 1996
  • In this study, the prediction of the fatigue life as well as the extimation of the characteristics of fatigue cumulative damage on GFRP under random loading were performed. The constant amplitude tests and the ramdom loading test were carried on notched GFRP specimens with a circular hole. Random waves were generated with a micro-computer and had wide band spectra. Since it is useful that the prediction of fatigue life ot the given load sequences is based on S-N curves under constant amplitude loading, the estimation of equivalent stress is done on every random waves. The equivalent stress wasat first estimated by Miner's rule and then by the proposed model which was based on Hashin-Rotem's comulative damage theory regarding nonlinear fatigue cumulative damage behavior. The fatigue lives were predicted from each equivalent stress evaluated. And each predicted fatigue llife was compared with experimental results. The number of cycles of random loads were counted by mean-cross counting method. The reuslts showed that the fatigue life predicted by proposed model was correlated well with the experimental results in comparison with Miner's model.

고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가 (Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids)

  • 이두영;정진성;김영대;방지예
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.