• Title/Summary/Keyword: Fatigue failure mode

Search Result 116, Processing Time 0.022 seconds

Lifetime Estimation for FPCB of Slide mobile phone (슬라이드형 휴대폰 FPCB(Flexible Printed Circuit Board)의 수명예측)

  • Choi, Jin-Young;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1283-1288
    • /
    • 2008
  • The FPCB is used as the important component of the sliding mechanism of mobile phones. FPCB have been used as jumper cables(fixed wiring) in various types of circuits because of their flexibility and bending property. The dominant failure mode of the FPCB is open that was caused by fatigue. The fatigue is repeated whenever the sliding is open, so it is a mainly cause of FPCB fatigue. We examined the bending-fatigue lifetime of FPCB. we focused on observing the contact resistance degradation of FPCB of mobile phones according to different test condition of bending strain. As a result, it has proved that lifetime decreased by increasing bending strain.

  • PDF

Design of Tilting Unit for Mobile Radio Communication Repeater (이동통신 중계기에 이용되는 틸팅유닛의 디자인)

  • Lee, Jung-Hyun;Park, Jae-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.156-160
    • /
    • 2012
  • Recently WCDMA signal transmission technology by large output microwave antenna have showed reduction of human resources and operating expense. But the existing antenna brackets cost is very expensive also its structure and functions are complicated. Unit brackets, suspending some sensors, subjected to acceleration loads, often fail due to self-vibration. To prevent such failures, it is necessary to understand the fatigue failure mode and to evaluate the fatigue life using tests or analysis techniques. The objective of this study is to develop the component test specifications, which are applicable to predict fatigue life at initial product design step, for unit brackets using vibration fatigue technique. So its application is limited to installation and management. In this project, we studied about more convenient bracket for microwave antennas through improvement on the existing antenna bracket's shortcoming and could develop an improved universal antenna bracket system for simple installation and application.

Behavior of the Crack Initiation, Transition and Fatigue Crack Growth of Rail Steel (레일강의 균열발생·천이 및 피로균열진전거동)

  • Lee, Jong Sun;Kang, Ki Weon;Choi, Rin;Kim, Jung Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.33-42
    • /
    • 1999
  • In the present study, crack initiation criteria, static failure and tensile mode fatigue behavior for a rail steel are evaluated to assure the railway vehicle's safety. The transverse fissure, which is the most critical damage in the rail, is initiated by the maximum shear stress and its location is subsurface. In addition, the possibility of transition from the shear mode to the mixed mode increases with increasing the length of subsurface crack. Because of the brittleness by the welding, the fracture toughness of the welded part is lower than of the base metal. For low ${\Delta}K$, the stage II fatigue crack growth rates of the welded part is slower than of the base metal but, for high ${\Delta}K$, this different behavior for fatigue crack growth rate is nearly diminished. These trends are more remarkable for low stress ratio, R=0.1. It is believed that this behavior is caused by the change of the microstructure which that of the welded part is coarser than of base metal.

  • PDF

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.

Use of High Order Vibration Modes for Design of Piezo Energy Harvester (압전 발전기의 설계를 위한 고차 모드의 활용)

  • Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • The most common type of the piezoelectric energy harvester is the cantilevered beam since it is attached to the host structure and tuned to the frequency of the base excitation easily. However, the excessive strain at the fixed end of cantilevered beam causes some problems such as fatigue and durability. The use of higher vibration modes of the cantilevered beam may reduce the concentration of the strain at the fixed end since the strains of higher modes are distributed along the span. The results show that the use of high vibration mode is not efficient for power generation, but it reduces the excessive strain lever at typical region to prevent the failure by fatigue.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Effect of Lubricant Additives on the Surface Fatigue Performance of Gear Oils

  • Hong, Hyun-Soo;Huston, Michael E.;Stadnyk, Nicholas M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.136-143
    • /
    • 1995
  • The effect of additive chemistry on the serface fatigue of gears was investigated using the FZG gear tester and fluids based on an API GL-5 grade oil. Surface fatigue lives were determined as a function of load and additive chemistry. At 1.52 GPa, the removal of the primary extreme pressure additive (EP) from the fully formulated gear oil decreased the fatigue life of gears slightly (4%), however, the removal of the primary antiwear additive (AW) decreased the fatigue life of gears significantly (83%). At 1.86 GPa, the removal of the EP additive from the fully formulated gear oil decresed the gear fatigue life 27%, however, the removal of the primary AW additive decreased the fatigue life of gears significantly (75%). Micropitting was the dominant surface morphology in the dedendum of gears tested With two oils at load stage: one using the complete additive package, and a second where the EP additive has been removed. However, spalling is the primary failure mode of gears tested without an AW additive independent of whether an EP agent was present. Surface analysis of pinion gears showed the formation of a mixed phosphate/phosphite-oxide layer on the surface of gears tested with fluids containing an AW. Formation of this layer seems to be key to long fatigue life.

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites (SiC 입자 보강 Al 복합재료의 피로균열 진전거동)

  • 권재도;문윤배;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.