• Title/Summary/Keyword: Fatigue design

Search Result 1,889, Processing Time 0.026 seconds

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Studies on Effective Fluid Monitoring Terminal design with the Use of location-based service (위치기반서비스를 활용한 효율적인 수액 모니터링 단말기 디자인에 관한 연구)

  • Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Fluid is normally used so that certain drug can be administered to patients for certain period of time. There are many incidents in which patients or guardians need to call upon medical staff after estimating the time of fluid injection termination. In case fluid injection is terminated during certain period such as sleeping time or others, it may cause more fatigue for either patients or guardians. Also, it may lead to ineffective work as medical staff needs to monitor the quantity of fluid several times in order to check the time of fluid injection termination. Therefore, the purpose of this study is to propose LBS system combined of minimum equipment and active RFID to monitor the level of fluid in order to solve abovementioned problems. Also, it is expected to enhance the quality of medical service with service in which real-time monitoring of fluid quantity and patient location is conducted to provide accurate information to either patients, guardians, or medical staff(nurse) so that medical staff can locate and see patients at the time of fluid injection termination.

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

A Study on Physically small Surface Fatigue Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 AI 합금에 있어서 물리적 미소 표면 피로균열 성장거동에 관한 연구)

  • Sin, Yong-Seung;Seo, Seong-Won;Yu, Heon-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.106-117
    • /
    • 1992
  • In this study, the propagation behaviour and the closure phenomena of physically small surface cracks were investigated by the techinque of the Kikukawa-unloading elastic compliance method using a back face strain gage. The surface cracks initiated and propagated from notched specimens under constant amplitude bending load. The crack shape (aspect ratio) with approximately semi-circular at the early stage was changed to semi-elliptical as the cracks grew larger. The crack depth (a) could be expressed uniquenly by the crack length (c). The dependence of the crack propagation rate on the stress ratio R was strongly related in the lower ${\Delta}K$ range. The deceleration of the surface crack propagation rate was prominent in lower R during the crack length was small. When the propagation rate was rearranged with the effective stress intensity factor range ${\Delta}$K_{eff} the dependence of the crack propagation rate on the stress ratio R was found to be diminshed. These were caused by the crack closure phenomena that was most prominent at the lower propagation rate. The mechanism of crack closure phenomena was dominated by the plasticity-induced mechanism.

  • PDF

Vibration Control of Offshore Platform using Tuned Mass Damper (동조질량감쇠기를 이용한 해양구조물의 진동제어)

  • Kim, Ju Myung;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.73-79
    • /
    • 2004
  • Tuned Mass Damper (TMD) was applied to control the vibration of an offshore structure due to ocean waves. The errors caused by the linearization of the fluid-structure interaction effect and the phenomena when using the linearized equation of motion in TMD design were analyzed. To determine the performance of TMD in controlling vibration, both regular waves with varying periods and irregular waves with different significant wave heights were used. When the offshore structure received regular waves with a period similar to the first natural period of structure. TMD performed well in terms of response reduction. Such was not the case for the other periods. however, In the case of irregular waves, TMD triggered the reduction of structural response for waves with relatively small significant wave height. For irregular waves with relatively big significant wave height, however, TMD did not show any control effect. Therefore, TMD is useful in reducing offshore structural vibration due to ambient waves, thereby helping secure fatigue life.

Evaluation of Pressure Distribution, Muscle Activity, and Subjective Comfort according to the Baby Carrier Type (아기 띠 종류에 따른 압력분포와 근활성도, 주관적 착용감 평가)

  • Lee, Heeran;Hong, Kyung Hwa
    • Journal of Fashion Business
    • /
    • v.21 no.4
    • /
    • pp.105-115
    • /
    • 2017
  • Continuous lifting and carrying of babies constitutes a serious physical burden, leading to issues such as muscle fatigue and pain in child-care workers. However, there is a lack of research on the pressure and subjective comfort of baby carriers that are commercially available in the market. Therefore, this study was intended to determine the most comfortable and least burdensome type of baby carrier. This was done by analyzing muscle activity and pressure when subjects carried babies using three types of baby carriers. The types of baby carriers evaluated included a 'baby carrier of thin shoulder straps without back support band (X-type)', a 'baby carrier with a back-support band and without a hip sheet (H-type)', and a 'baby carrier with back support band and hip support (H-hip type). The subjective comfort of subjects wearing each type of baby carrier was investigated and compared to the objectively measured data. As a result, the X-type baby carrier showed the heaviest pressure on the shoulders and the subjective comfort was found to not be good. On the waist region, the H-type and H-hip type baby carriers showed significantly less muscle activation than the X-type baby carrier. However, subjects showed a stronger preference for the X-type baby carrier on the waist region, despite greater muscle activation. This appears to be because although the back-support band disperses the weight and thus improves physiological comfort; the wearers feel cramped and thus, lower their psychological comfort.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.

Durability Evaluation of the Korean Gauge - Adjustable Wheelset System (궤간가변 윤축시스템의 내구성 평가)

  • Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5669-5675
    • /
    • 2012
  • To reduce the cost and the time of transport in Eurasian railroad networks such as TKR(Trans-Korea Railway), TCR(Trans-China Railway) and TSR(Trans-Siberia Railway) owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge-adjustable wheelset(GAW) system to adapt easily to these gauges. The Korean GAW system is developing and will be adapting to the brand new freight trains' to improve the conventional overseas GAW system. In this study, structural and durability analyses are performed from the viewpoint of the safe-life design. The core parts of the system might be safe in range of $1{\times}10^7$ cycles from the result of durability analysis. Moreover, to examine the safety of the system while running on a track, rig fatigue test was performed according to UIC code. The safety of the Korean GAW system is demonstrated through testing that all safety-relevant conditions are satisfied.

The Effects of Neurofeedback Training on Brain Function Quotient of Elderly with Long-term Care Insurance Service (뉴로피드백 훈련이 장기요양시설노인의 뇌기능지수에 미치는 효과)

  • Youn, Mee Kyung;Hyun, Kyung Sun;Park, Pyung Woon;Lee, Kuang Shim;Jeong, Dong Lye;Lee, Jung Eun
    • Journal of East-West Nursing Research
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2012
  • Purpose: Recently, Neurofeedback training system that based on biofeedback of brain wave was introduced. This study was performed to identify the effects of the improvement of brain function by Neurofeedback training on elders(the 2nd or 3rd grade of long-term care insurance services). Methods: A quasi-experimental design using a nonequivalent control group, pre-post test was used. Total 11 elderly were enrolled in this study (experimental group 5, control group 6). The intervention was conducted 3 times a week for 30 minutes from January to June, 2012 (total 60 times). Chi-square test and Mann-Whitney U-test were used to analyze the data. Results: After the Neurofeedback intervention, attention quotient (AQ), anti-stress quotient (ASQ), emotion quotient (EQ) and brain quotient (BQ) of the experimental group were significantly better than those of the control group. Conclusion: The findings indicate that the Neurofeedback training program was effective in reducing fatigue by AQ, increasing the physical and mental stress resistance by ASQ, emotional balance by EQ and improving of total brain function by BQ. Therefore Neurofeedback training be used as an effective training intervention for the health of elderly in geriatric facility.

Analysis of Material Response Based on Chaboche Unified Viscoplastic Constitutive Equation; (CHABOCHE 통합 점소성 구성방정식을 이용한 재료거동해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yu, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3516-3524
    • /
    • 1996
  • Service conditions for structures at elevated temperatures in nuclear power plant involve transient thermal and mechanical load levels that are severe enough to caeuse inelastic deformations due to creep and plasticity. Therefore, a systematic mehtod of inelastic analysis is needed for the design of structural components in nuclear poser plants subjected to such loading conditions. In the present investigation, the Chabodhe model, one of the unified viscoplastic constitutive equations, was selected for systematic inelastic analysis. The material response was integrated based on GMR ( generallized mid-point rule) time integral scheme and provided to ABAQUS as a material subroutine, UMAT program. By comparing results obtaned from uniaxial analysis using the developed UMAT program with those from Runge-Kutta solutions and experimentaiton, the validity of the adopted Chaboche model and the numerical stability and accuracy of the developed UMAT program were verified. In addition, the developed material subroutine was applied for uniaxial creep and tension analyses for the plate with a hole in the center. The application further demonstrates usefulness of the developed program.