• Title/Summary/Keyword: Fatigue Safe Life

Search Result 72, Processing Time 0.027 seconds

Remaining Life Estimation of a Level Luffing Crane Component by Computer Simulation (컴퓨터 시뮬레이션을 통한 수평 인입 크레인 구성 재료의 잔존수명 예측)

  • Kim, Sangyeol;Kim, Seongsoo;Choi, Heekyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.489-497
    • /
    • 2010
  • The remaining life estimation of the level luffing crane component, which has operated for about 20 years is examined carefully, especially on the crane structures. To analyse the crane sructures, the basic load and load combination needed to be considered. We modeled various parts of the level luffing crane to analyse fatigue. Fatigue analysis results showed that the level luffing crane is in the fatigue life so that the crane is in the safe state in fatigue cumulative damage. Analysis results show that the remaining life of a jib upper beam would be about 10 years therefore, the level luffing crane should be stable for fatigue for that period.

Fatigue Safe Life Evaluation of Rotating Swashplate of Helicopter Main Rotor Control System (헬리콥터 주로터 조종 시스템 회전형 스와시플레이트 피로 안전수명 평가)

  • Kim, Dong-Chul;Lee, Pan-Ho;Kang, Shin-Hyun;Choi, Young-Don;Kim, Tae-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The main rotor control system is an important structural part of a helicopter that manages the thrust and control force of the helicopter. The main rotor control system consists of a swashplate assembly, scissor assembly, pitch rod assembly, guide, etc. The main rotor control system must endure various loads, such as the thrust and control force, and must meet the optimized fatigue safety life. The rotating swashplate is an important structure influenced by the pitch rod load and rotating scissor load. In this paper, the accuracy of a result about the rotating swashplate part of the main rotor control system is proven through comparison between fatigue test and FEM results. Based on this result, we estimate the lifetime and deduce the fatigue safe lifetime.

Fatigue Test and Evaluation of Landing Gear (착륙장치 피로 시험평가)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1181-1187
    • /
    • 2012
  • For the fatigue design of aircraft landing gear, the safe-life approach is applied. Structural defects such as cracks or detrimental deformations should not occur under the fatigue load spectrum depicting the entire lifetime usage of the aircraft. In the design phase, the fatigue life of the landing gear is estimated analytically by adopting the stress-based approach because the fatigue of aircraft landing gear is generally high-cycle fatigue. This utilizes S-N curves that are factored to produce design curves that account for the scatter and surface finish of the material. In the test and evaluation phases, a fatigue test should be conducted for full-scale landing gear to substantiate the fatigue design requirement in the end. In this study, the procedure for the fatigue test and evaluation of aircraft landing gear is presented with real application cases.

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

Fatigue Safe Life Analysis of Helicopter Rotor Bearingless Hub System Composite Components (헬리콥터 로터 무베어링 허브 시스템 복합재 구성품 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • We designed bearingless rotor hub system which replace mechanical hinge/bearing with composite beam component and conducted fatigue analysis for flexbeam and torque tube. Extension/bending/torsional stiffness was calculated from 2D section analysis using VABS and 2D section structure analysis was applied for strain calculation. S-N curve of each composite material was generated using Wohler equation and fatigue analysis was conducted on weakness section which was decided from static structure analysis. CAMRAD II was used for load analysis and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used fatigue safe life analysis.

Assessment of casting parts fatigue life for 3MW offshore wind turbine (3MW 해상풍력발전기 주물품의 내구수명 평가)

  • Roh, Gitae;Kang, Wonhyoung;Lee, Seongchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

Influence of laser peening on fatigue crack initiation of notched aluminum plates

  • Granados-Alejo, Vignaud;Rubio-Gonzalez, Carlos;Parra-Torres, Yazmin;Banderas, J. Antonio;Gomez-Rosas, Gilberto
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.739-748
    • /
    • 2017
  • Notches such as slots are typical geometric features on mechanical components that promote fatigue crack initiation. Unlike for components with open hole type notches, there are no conventional treatments to enhance fatigue behavior of components with slots. In this work we evaluate the viability of applying laser shock peening (LSP) to extend the fatigue life of 6061-T6 aluminum components with slots. The feasibility of using LSP is evaluated not only on damage free notched specimens, but also on samples with previous fatigue damage. For the LSP treatment a convergent lens was used to deliver 0.85 J and 6 ns laser pulses 1.5 mm in diameter by a Q-switch Nd: YAG laser, operating at 10 Hz with 1064 nm of wavelength. Residual stress distribution was assessed by the hole drilling method. A fatigue analysis of the notched specimens was conducted using the commercial code FE-Safe and different multiaxial fatigue criteria to predict fatigue lives of samples with and without LSP. The residual stress field produced by the LSP process was estimated by a finite element simulation of the process. A good comparison of the predicted and experimental fatigue lives was observed. The beneficial effect of LSP in extending fatigue life of notched components with and without previous damage is demonstrated.

Structural and Fatigue Analysis on Shock Absorber Mount of Automobile (자동차의 쇽업쇼바 마운트에 대한 구조 및 피로해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.125-133
    • /
    • 2012
  • This study aims at structural analysis with fatigue on the shock absorber mount of automobile. Two kinds of mount as original model 1 and reinforced model 2 are applied. Among the cases of nonuniform fatigue loads at both models, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' or 'SAE transmission', the maximum fatigue life at model 2 is 5 to 6 times as much as model 1 and the minimum damage at model 2 is decreased 5 to 6 times as much as model 1. In case of 'Sample history' as slow fatigue loading history, the minimum damage at model 2 becomes same as model 1 but the maximum fatigue life at model 2 is decreased more than 17 times as much as model 1. In case of 'Sample History' with the average stress of -$10^4MPa$ to $10^4MPa$ and the amplitude stress of 0MPa to $10^4MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Safe and durable design of shock absorber can be effectively improved by using this study result on mount frame.

Study on Durability by Vibration and Fatigue of the Helicopter (헬기의 진동과 피로에 대한 내구성 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration on main rotor and body of helicopter. The maximum stress is shown on adjoint part between body and main rotor at the lower position of main rotor. As the maximum displacement amplitude is happened at 4000Hz, there is no resonance and the state of helicopter becomes safe at hovering without the abnormal air current and the disabled rotor. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5MPa$ and the amplitude stress of 0MPa to $8.539{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study by using the analysis of vibration and fatigue can be effectively utilized for safe and durable design of helicopter.

Structure Structural Durability Analysis on Bike Carrier Basket (자전거 짐받이에 대한 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.