• 제목/요약/키워드: Fatigue Safe Life

검색결과 72건 처리시간 0.031초

자동차의 프런트 범퍼 가드에 관한 내구성 연구 (A Durability Investigation on Automotive Front Bumper Guard)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, three models on the installation of automotive additional front bumper guard were designed and the structural analysis was carried out. The additional front bumper models B and C appears to be safer on stability instead of the basic front bumper model A. Model A with a simple structure is shown to have the safe region overall except in the area where the load is applied directly. Models B and C are shown to have the shortest lives at the regions where the bumpers are connected with each other. By comparing with the least fatigue lives at models A, B and C, Model B has the longest life with the best durability.

불규칙 하중을 받는 자전거 브레이크의 피로 해석 (Fatigue Analysis of Bike Brake under Nonuniform Load)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.133-141
    • /
    • 2012
  • This study investigates structural and fatigue analyses of bike brake. Maximum equivalent stress of the model of mountain bike is 4 times as much as the model of general bike at static analysis. In cases of mountain and general bikes, maximum damage frequency at load of 'SAE bracket history' with the severest change of load becomes as much as 16 times than the most stable load of 'Sample history' among the nonuniform fatigue loads. In case of mountain bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-3{\times}10^4$MPa and the amplitude stress of 0 to $10^4$MPa. In case of general bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-0.8{\times}10^4$MPa and the amplitude stress of 0 to $0.2{\times}10^4$MPa. This stress state can be shown as 5 to 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The analysis result of this study can be effectively utilized for the safe design of bike brake.

구리 TSV의 열기계적 신뢰성해석 (Thermo-mechanical Reliability Analysis of Copper TSV)

  • 좌성훈;송차규
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

트위스트 런 운동기구의 내구성 향상에 관한 해석 (An Analysis on Durability Improvement of Twist Run Exercise Equipment)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.116-122
    • /
    • 2014
  • In this study, 2 kinds of twist run models as exercise equipments are compared by durability analyses of fatigue and vibration. Maximum equivalent stresses are shown as 3.3 MPa and 16.6 MPa at the parts of stress concentrations at models 1 and 2. As the values becomes much lower than yield stress of this models, these models are shown to be safe designs. Model 1 becomes stronger than model 2 at natural frequency analysis. Fatigue lives become lowest at four axis parts and one axis part respectively in cases of models 1 and 2. Maximum damage probability at fatigue is shown to be 2.4% near the average stress of 0 in case of model 1 but this probability becomes 0.6 % in case of model 2. Model 1 has the maximum damage possibility 4 times more than model 2 at these states. As the result of this study is applied by the design of twist run, the prevention on fatigue damage and the durability are predicted.

클러치의 구조 안전 해석 (Structural Safety Analysis of Clutch System)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.148-155
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration at clutch on the rotation of wheel. Eigenfrequencies from 1'st to 6'th order about clutch assembly are shown with the vibration at more than 800Hz. Maximum equivalent stress is shown with the frequency of 800Hz in case of the harmonic vibration applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5$ MPa and the amplitude stress of 0MPa to $10^5$ MPa, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the safe design of clutch.

콘크리트도상(STEDEF)의 선로조건을 고려한 레일휨응력 예측과 피로수명 산출 (Evaluation of Rail Fatigue and Bending Fatigue Considering Concrete Track Condition)

  • 이수형;강유송;박용걸
    • 한국철도학회논문집
    • /
    • 제20권5호
    • /
    • pp.658-667
    • /
    • 2017
  • 철도는 여객을 수송하기 위한 수단으로, 열차의 주행안정성과 탈선방지 등 절대적인 승객의 안전을 확보하는 것이 중요하다. 철도에서 사용하고 있는 레일은 여객을 안전하게 수송하는데 있어 가장 중요한 역할을 담당하는 궤도의 구성품이며, 안전을 위하여 레일의 피로, 파괴에 대한 신뢰성 확보가 엄격히 요구되고 있다. 본 논문에서는 콘크리트 궤도(STEDEF)의 현장측정을 통해 레일표면요철과 레일휨응력이 선형적인 상관관계가 있음을 확인하였으며, 레일표면요철, 궤도지지강성, 열차속도에 따른 레일의 휨응력예측식을 제시하였고, 실내 피로시험을 통해 S-N선도를 도출하여 레일 피로수명을 산정하였다.

TBM 커터헤드의 구조안정성 검토를 위한 피로해석 (Fatigue analysis for structural stability review of TBM cutterhead)

  • 최순욱;강태호;이철호;장수호
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.529-541
    • /
    • 2020
  • 기계화터널시공의 대표적인 장비인 TBM의 커터헤드는 타 장비에 비해 굴착 중 발생하는 하중이 매우 크며, 마모가 발생하여 단면이 손실되는 작업환경을 가지고 있어 피로파괴에 의한 설계검토가 필요하지만, TBM커터헤드에 대한 피로해석을 수행한 사례는 찾기 어렵다. 본 연구에서는 직경 8.2 m인 커터헤드를 대상으로 안전수명설계 개념으로 S-N커브를 이용하여 응력-수명 설계 검토를 수행하였다. 또한 건설장비의 피로설계방법과 피로손상도를 평가하는 방법에 대해 소개하고 직경 8.2 m의 TBM 커터헤드를 대상으로 피로해석을 수행한 결과를 설명하였다. S-N curve는 피로 설계를 하는 데에 있어서 핵심적인 역할을 하는 것을 알 수 있었으며, 피로 하중을 받고 있는 구조물이 현재 시점에서 어느 정도의 피로 손상을 받고 있는지를 평가하는 데에도 사용될 수 있다. 앞으로 건설장비에서도 장비를 사용하는 동안 어떤 시점에서 피로문제가 발생하는지와 장비의 안전 점검은 언제 실시하는 것이 효과적인지 등에 대한 정보를 파악하는 안전수명설계 개념을 도입하는 것이 필요하다.

침치료가 폐암 환자의 피로도에 미치는 영향: Pilot Study (The Effectiveness of Acupuncture for Fatigue Severity in Lung Cancer Patients: Pilot Study)

  • 현대성;김종대;권효정;정현정
    • Korean Journal of Acupuncture
    • /
    • 제29권4호
    • /
    • pp.623-633
    • /
    • 2012
  • Objectives : Fatigue is a common and distressing symptom that is a concern for cancer patients. It has a decisive effect on quality of life. The purpose of this study was to examine the feasibility of clinical trial to evaluate of efficacy and safety of acupuncture on cancer related fatigue of lung cancer patients. Methods : Total lung cancer 9 patients complained of fatigue were treated by acupuncture twice a week for four weeks(8 times in total). Evaluation of the severity of fatigue was measured by FSS(Fatigue Severity Score). In visit 1, 10, we checked FSS. For check safety of acupuncture treatment, we did blood test. Results : After 4 weeks of acupuncture treatment, the FSS was significantly decreased from $4.92{\pm}1.06$ to $3.74{\pm}1.37$(p=0.008). And the level of hemoglobin was significantly increased from 10.87 g/dl to 12.01 g/dl(p=0.014). No other lab measures indicated any significant differences between before and after acupuncture treatment. Conclusions : This study suggests that acupuncture treatment will be beneficial for lung cancer patients to improve the fatigue severity. And acupuncture treatment is safe method for lung cancer patients. A large-scale study to confirm efficacy and safety of acupuncture is needed.

저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구 (A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines)

  • 이돈출;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF

국제 철도 연맹 규정(UIC Code)에 따른 RCV 대차 프레임 구조 안전성 평가 (RCV bogie frame structure safety evaluation according to UIC Code)

  • 노상철;박지형;강신유
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.7-13
    • /
    • 2023
  • Nowadays, traffic congestion is emerging as a major problem due to the rapid population growth and the increase in automobiles. The train is a convenient means of transportation that can efficiently solve these problems. Trains have been developed in line with human aspirations for a long time, but research on safety is still insufficient. This study aims to check safety by conducting static tests and fatigue tests on bogie frames, and to help develop bogie frames in the future. For the static test, a strain gauge was attached to the point where the local stress concentration was expected beforehand, and the result value was derived, compared with existing theories, and expressed as a Goodman diagram. In the fatigue test, a total of 10 million loads were applied over three stages, and no cracks appeared in the non-destructive test conducted after each stage. Both tests were conducted according to the strict test method of the bogie frame presented by the UIC Code. It satisfied both fatigue life and strength evaluation criteria and was judged to be a bogie frame usable for safe train production.