• Title/Summary/Keyword: Fatigue Life Parameters

Search Result 193, Processing Time 0.025 seconds

Statistical Analysis of Fatigue Crack Growth Properties for Silicon Carbide Particles Reinforced Metal Matrix Composites ($SiCp/A\ell$ 6061 복합재료의 피로균열진전특성에 관한 통계학적 해석)

  • 권재도;문윤배;안정주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.130-139
    • /
    • 1996
  • The silicon carbide particles reinforced aluminium 6061($SiCp/A\ell$) composites are generally known have wild range of applications from automobiles to airospaces. But, by the results of existing study for $SiCp/A\ell$ composites, there are reports that the fatigue life of $SiCp/A\ell$ composites has improved than $A\ell$matrixes and has not improved then $A\ell$ matrixes. Consequently, in order to perform the reliable life prediction for $SiCp/A\ell$, the properties of probability distribution of fatigue crack initiation life & fracture life, crack growth length in constant number of cycles, crack growth rate in constant stress intensity factor range and m & C value in Paris's fatigue crack growth law and the estimation of statistical parameters have been evaluated by the statistics method.

  • PDF

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature

  • Feng, Liuyang;Qian, Xudong
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.777-792
    • /
    • 2019
  • This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life (윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과)

  • Heo, Tae Hyeon;Sim, Chung-Ki;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

A Study On the Rrobabilistic Nature of Fatigue Crack Propagation Life(I) -The Effect of Distribution of Initial Crack Size- (피로크랙 진전수명의 확률특성에 관한 연구 I -초기크랙길이 분포의 영향-)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.138-144
    • /
    • 1990
  • In order to understand the probabilistic nature of fatigue crack propagation, not only the calculation of failure probability and parameter sensitivity, but also the clarification of probabilistic nature of various parameters should be executed. Therefore a method to evalute synthetically the effect of each parameter on the distribution of fatigue crack propagation life is required. In this study, the effects of the initial crack size and other paramaters on the distribution of fatigue crack propagation life are discussed according to the appropriate normalization of the life distribution, the validity of this method is also shown. Such an investigation as the present work may be useful to understand the nature of the life distribution and to utilize the probailistic fracture mechanics.

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

A Study on the Spectral Fatigue Analysis of Semi-submersible Rig Structures (반 잠수식 시추선의 스펙트랄 피로해석에 관한 연구)

  • Cho, Kyu-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.103-112
    • /
    • 1994
  • Various kinds of fatigue failures of ocean structures were reported and the importance of fatigue life estimation at the design state is significantly recognized and various kinds of analysis approaches have been discussed. In this paper characteristics of the simplified method proposed here and the spectral method are studied and the elements of the approach are discussed. The merits and demerits of the forementioned analysis schemes are studied and the relating parameters such as SCF and S-N curves are also investigated. The simplified fatigue analysis approach and tile spectral fatigue analysis technique is applied for the analysis of bracing members of typical semi-submersible drilling rig structure for the verification of the usage of two methods and the sensitivity study has been performed using the simplified method. The result from the spectral analysis give a more realistic picture of the fatigue life of the offshore structure considered here.

  • PDF

Fatigue Life Evaluation of Diesel Locomotive Car body Considering Camber Effect (캠버를 고려한 디젤기관차 차체 피로수명평가)

  • Jun, Hyun-Kyu;Lee, Dong-Hyung;Kim, Jae-Chul;Lee, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.372-377
    • /
    • 2008
  • Camber with positive deflection is one of the very important design parameters in the manufacture of railway coach. Positive camber is defined as concave shape such as an arch and it increases the strength of structure remarkably. But during the operation of a structure, the positive camber turns into negative camber and it loses the strength of structure. Therefore we should consider the camber effect when we evaluate the fatigue strength of negative cambered structure. For this purpose, we made a model of negative cambered locomotive car body and performed structural analysis and also we measured the dynamic loads at critical points during commercial line operation. Fatigue strength of locomotive was calculated by applying Miner's damage accumulation rule. Fatigue strength of the two locomotives which have different camber were compared to find out the effect of camber on dynamic load amplitude. We found that the more negative camber a locomotive had, the shorter fatigue strength obtained.

  • PDF