• Title/Summary/Keyword: Fatigue Life Analysis

Search Result 1,207, Processing Time 0.04 seconds

The Contact Fatigue Life Analysis of Transmission Gear considering Running-in (길들이기 과정을 고려한 변속기용 기어의 접촉피로 수명 해석)

  • Moon, Kil-Hwan;Lee, Sang-Don;Cho, Yong-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.133-138
    • /
    • 2007
  • Surface pitting is a major failure mode for gears. The contact fatigue life analysis of transmission gear considering running-in process is presented in this paper. Surface roughness change of rolling test is used in a life analysis. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions; the subsurface stress field is obtained using rectangular patch solutions. Mesoscopic multiaxial fatigue criterion which can yield satisfactory results for non-proportional loading is then applied to predict fatigue damage. Suitable counting method and damage rule were used to calculate the fatigue life of random loading caused by rough surface. The life analysis considering running-in is in good agreement with the experimental results.

Contact Fatigue Life Prediction of Automotive Wheel Bearing (차량용 휠베어링의 접촉 피로수명 예측에 관한 연구)

  • Lee, Sang-Don;Moon, Kil-Hwan;Cho, Yong-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.137-143
    • /
    • 2008
  • For most bearings, it is a common requirement to have long durability. Especially wheel bearing fatigue life is the most important in automotive quality. The contact fatigue life analysis of automotive wheel bearing considering real raceway rough surface is presented in this paper. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions; the subsurface stress field is obtained using rectangular patch solutions. Mesoscopic multiaxial fatigue criterion which can yield satisfactory results for non-proportional loading is then applied to predict fatigue damage. Suitable counting method and damage rule were used to calculate the fatigue life of random loading caused by rough surface. The life analysis considering real rough surface of wheel bearing raceway is in good agreement with the experimental results.

A Fatigue Analysis Study on the Fractured Fixing Bolts of Mobile Elevated Work Platforms (고소작업대의 파손된 고정볼트의 피로분석에 관한 연구)

  • Choi, Dong Hoon;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • The mobile elevated work platforms(MEWPs) consist of work platform, extending structure, and car, and it is a facility to move persons to working positions. MEWPs are useful but composed complex pieces of equipments, and accidents are caused by equipment defects. Among them, accidents caused by fracture of the bolts fixing the extension structure and the turntable are increasing. In this study, fatigue failure and fatigue life of a turntable fixing bolt subjected to irregular fatigue load were analyzed by FEA. For this purpose, finite element modeling is proposed and structural analysis and fatigue analysis are performed simultaneously for fixing bolts. As a result of the structural analysis, it was confirmed that there is no risk of permanent deformation because the maximum stress acting on the fixing bolt is lower than the yield strength, and fatigue analysis was confirmed that the fatigue life is less than the design standard. The fatigue analysis results of this study can be effectively used for the design and the documentary assessment of the safety certification of the MEWPs by examining the fatigue life of the turntable fixing bolt.

A Study on the Prediction of Fatigue Life in Die (금형의 피로수명 예측에 관한 연구)

  • 여은구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.87-92
    • /
    • 1999
  • Generally the life of die is limited by fatigue fracture or dimensional inaccuracy originated from wear. In this paper to predict the fatigue life of die the stress and strain histories of die can be predicted by the analysis of elastic-plastic finite element method and the elastic analysis of die during the process analysis of workpiece. Also the stress-life curve of die material can be obtained through experiment. With the above to재 facts we propose the analysis method of prediction fatigue life in die,. In the proposed model the analysis of elastic-plastic finite element method for material is carried out by using ABAQUS. Surface force resulted from the contacting border of the die and workpiece is transformed into the nodal force of die to implement elastic analysis. besides the proposed analysis model of die is applied to extrusion die and forging. die.

  • PDF

Probabilistic Fatigue Life Evaluation for a Car Body Structure (차체 구조물의 확률론적 피로수명 평가 연구)

  • 구병춘;서정원;김재훈
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.150-155
    • /
    • 2002
  • En case of the fatigue life evaluation of rolling stock structures, mainly deterministic fatigue life evaluation has been carried out. But most of the parameters influencing on the fatigue life have a probabilistic distribution such as normal, log-normal, Weibull, etc. Therefore, to take probabilistic factors into fatigue life evaluation, probabilistic methods are being applied to the fatigue life evaluation of rolling stock. In this paper, probabilistic S-N analysis and methods using limit state functions are introduced. And some results of fatigue life evaluation obtained with these methods for rolling stock structures are shown.

  • PDF

Development of new finite elements for fatigue life prediction in structural components

  • Tarar, Wasim;Scott-Emuakpor, Onome;Herman Shen, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.659-676
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop new finite elements for uniaxial and bending fatigue life prediction. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite elements for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure for each element in structural components. The performance of the fatigue finite elements is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.

Fatigue Life Assessment of Journal Box Attached to Bogie under Multiaxial Random Dynamic Loading (다축 Random Dynamic 하중을 받는 대차 저널박스의 피로수명평가)

  • Park, Sang-Goo;Kim, Seung-Seob;Han, Sung-Wook;Park, Geun-Su;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1125-1131
    • /
    • 2009
  • This paper presents the evaluation of fatigue life for a journal box attached to rolling stock bogie under random dynamic loading condition. Because a journal box was under random dynamic loading conditions, the fatigue life assessment due to these loads requires the analysis considering the multiaxial effect of random dynamic loading. To do this work, the finite element analysis has been conducted to calculate random dynamic response using multiaxial acceleration data. Then, the fatigue life assessment of component has been conducted using vibration fatigue analysis applying the power spectral densities of the responses obtained through the FEA The results of fatigue life assessment were compared to the damage from the strain measurement. This study shows that can be evaluated the fatigue life assessment considering real service condition about a component attached to rolling stock bogie.

  • PDF

Finite element analysis based fatigue life evaluation approach for railway bridges: a study in Indian scenario

  • Ajmal, P.C. Hisham;Mohammed, Althaf
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.429-443
    • /
    • 2018
  • Fatigue is a principal failure mode for steel structures, and it is still less understood than any other modes of failure. Fatigue life estimation of metal bridges is a major issue for making cost effective decisions on the rehabilitation or replacement of existing infrastructure. The fatigue design procedures given by the standard codes are either empirical or based on nominal stress approach. Since the fatigue life estimation through field measurements is difficult and costly, more researches are needed to develop promising techniques in the fatigue analysis of bridges through Finite Element Analysis (FEA). This paper aims to develop a methodology for the Fatigue life estimation of railway steel bridge using FEA. The guidelines of IIW-1823-07 were used in the development of the methodology. The Finite Element (FE) package ANSYS and the programming software MATLAB were used to implement this methodology on an Indian Railway Standard (IRS) welded plate girder bridge. The results obtained were compared with results from published literature and found satisfactory.

Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe (서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계)

  • Lee, Sang-Beom;Lee, Hyuk-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.646-652
    • /
    • 2009
  • In this paper, welding pitch optimization technique of vehicle subframe is presented considering the fatigue life of spot welding nuggets. Fatigue life of spot welding nuggets is estimated by using the frequency-domain fatigue analysis technique. The input data, which are used in the fatigue analysis, are obtained by performing the dynamic analysis of vehicle model passing through the Belgian road profile and also the modal frequency response analysis of finite element model of vehicle subframe. According to the fatigue life result obtained from the frequency-domain fatigue analysis, the design points to optimize the weld pitch distance are determined. For obtaining the welding pitch combination to maximize the fatigue life of the spot welding nuggets, 4-factor, 3-level orthogonal array experimental design is used. This study shows that the optimized subframe improves the fatigue life of welding nugget with minimum fatigue life about 65.8 % as compared with the baseline design.

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.