• Title/Summary/Keyword: Fatigue Endurance

Search Result 210, Processing Time 0.039 seconds

A Study on Life Assessment for Urban Transit Structure (도시철도차량 구조체의 수명평가에 관한 연구)

  • Chung J.D.;Chun H.J.;Han S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.115-116
    • /
    • 2006
  • In these days, almost urban railway vehicle has been serviced under the random load application. But it is very important that fatigue lift prediction fur structures is major factor of safety. So do this, it is required that fatigue assessment method for cumulative damage approach while Korea domestic regulations only has endurance limit approach. With this endurance limit approach, fatigue lift prediction is impossible. In this research, it will be present that fatigue assessment for urban transit structure by using of cumulative damage approach method and related theories.

  • PDF

Gigacycle Fatigue Endurance Strength of High Density Mo and Cr-Mo Prealloyed Sintered Steel

  • Xu, Chen;Danninger, Herbert;Khatibi, Golta;Weiss, Brigitte
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.385-386
    • /
    • 2006
  • For attaining optimum fatigue resistance of PM steels, high density levels are necessary. In this work, sintered steels Fe-1.5%Mo-0.6%C and Fe-1.5%Cr-0.2%Mo-0.6%C were produced with density levels of 7.1 to $7.6\;g.cm^{-3}$. Ultrasonic fatigue testing with 20 kHz was performed in push-pull mode up to 10E9 cycles. It was shown that the fatigue endurance strength is strongly improved by higher density levels, but also higher sintering temperatures are beneficial. The Cr-Mo steels proved to be superior to the plain Mo alloyed, due to a more favourable as-sintered matrix microstructure.

  • PDF

Evaluation of dynamic muscle fatigue model to predict maximum endurance time during forearm isometric contraction (전완의 등척성 수축시 최대근지구력시간을 예측하기 위한 동적근피로모델의 평가)

  • Kiyoung, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.433-439
    • /
    • 2022
  • Muscle fatigue models to predict maximum endurance time (MET) are broadly classified as either 'empirical' or 'theoretical'. Empirical models are based on fitting experimental data and theoretical models on mathematical representations of physiological process. This paper examines the effectiveness of dynamic muscle fatigue model as theoretical model to predict maximum endurance time during forearm isometric contraction. Forty volunteers (20 females, 20 males) are participated in this study. Empirical models (exponential model and power model) and theoretical model (dynamic muscle fatigue model) are used to compare. Mean absolute deviation (MAD), correlation coefficient (r) and intraclass correlation (ICC) are calculated between theoretical model and empirical models. MAD are below 3.5%p, r and ICC are above 0.93 and 0.87, respectively. This results demonstrate that dynamic muscle fatigue model as theoretical model is valid to predict MET.

Compression-Compression Fatigue Behavior of Al-Si-Ca alloy Foams (Al-Si-Ca 합금 폼의 압축 피로 거동)

  • Lee, Chang-Hun;Ha, San;Kim, Am-Kee;Jeong, Gil-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.190-195
    • /
    • 2004
  • The compression-compression fatigue properties of the closed cell Al-Si-Ca alloy foams have been studied. The monotonic and cyclic compressive properties were compared with each other and the fatigue stress-life (S-N) curves were presented. In compression-compression fatigue, the crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting which is in accordance with the findings of previous researchers [1-3]. Young's modulus of the foam was found to decrease with the increasing strain in case of fatigue test however in case of monotonic compression test the value of Young's modulus increased with the strain (number of cycles). The endurance limit on the basis of $10^{7}$ cycles obtained by extrapolating the experimental results were 0.98 MPa and 1.70 MPa for load ratios 0.1 and 0.5 respectively which are 34 % and 59 % of the plateau stress.

  • PDF

Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy (Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가)

  • Kim, Ki-Ik;Kim, Young-Jin;Ahn, Dong-Geun;Kim, Cheol-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.483-489
    • /
    • 2009
  • The endurance of expansion joint manufactured the Fe-Mn damping alloy reducing noise and vibration is analyzed into FEM (Finite Element Method) and fatigue test. The fatigue test have been performed using the expansion joint manufactured Fe-Mn damping alloy and the hydraulic actuator (25tonf). And the results of fatigue test show that the maximum strength is 237.6 MPa. Also that is 56.6 percent of Fe-Mn damping alloy yield strength (420 MPa). The loading plate size is prepared $57.7cm{\times}23.1cm$ and the loading plate's set position is located on expansion joint. The expansion joint manufactured the Fe-Mn damping alloy had not presented breaking behavior against 2,000,000 times fatigue test and identified the fatigue endurance.

The Effects of Complex Ergogenic aid Supplementation on Endurance Performance, Energy Substrates Utilization and Blood Fatigue Factors (복합 기능성보조제 투여가 지구성 운동수행력과 에너지 기질 및 혈중피로요소에 미치는 영향)

  • Kang, Seo-Young;Paik, Il-Young;Kwak, Yi-Sub;Cho, Su-Youn;Kim, Hee-Eun;Jin, Hwa-Eun
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1623-1628
    • /
    • 2009
  • The purpose of this study was to investigate the effects of complex ergogenic aid supplementation on endurance performance, energy substrate utilization (glucose, FFA) and blood fatigue factors (ammonia, lactate, phosphorous, pH, 5-HT) in endurance exercise. Subjects (male=10) took in complex ergogenic aid (180 ml/day) for 4 weeks and were tested after pre-test. Endurance performance times increased after supplementation compared to before supplementation. However, there was no additional accumulation of the fatigue materials. Thus the complex ergogenic aid supplementation caused the delay of the fatigue material accumulation during endurance exercise.

The Fretting Fatigue Behavior of Ti-6Al-4V Alloy on Change of Microstructure (Ti-6Al-4V 합금의 조직 변화에 따른 프레팅 피로거동)

  • Bae Yong Tak;Choi Sung long;Kwon Jae Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.584-590
    • /
    • 2005
  • The effect of microstructure on mechanical behavior for Ti-6Al-4V alloy was studied. Two different kinds of specimens are prepared using heat treatments (rolled plate, $1050^{\circ}C)$ in order to Produce different microstructures. Various kinds of mechanical tests such as hardness, tensile, fatigue and fretting fatigue tests are performed for evaluation of mechanical properties with the changes of microstructures. Through these tests, the following conclusions are observed: 1) Microstructures are observed as equiaxed and $widmanst{\ddot{a}}ten$ microstructures respectively. 2) Impact absorbed energy is superior for the equiaxed microstructure, and the hardness and tensile strength are superior for the $widmanst{\ddot{a}}ten$ microstructure. 3) The fatigue endurance of $widmanst{\ddot{a}}ten$ microstritcture shows higher value than that of the equiaxed microstructure. 4) The fatigue endurance in fretting condition was reduced about $50{\%}$ from that of the non-fretting condition.

A study on the Bending Fatigue Strength of Die Steels coated with VC(Vanadium Carbide)by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC coating 금형강의 굽힘 피로강도에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.166-177
    • /
    • 1993
  • Bending fatigue strength tests were made for VC coated die steels which were coated by immersing in a molten borax bath and for hardened die steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$ and $1025^{\circ}C$. The material used in this investigation was a representative cold and hot die steels STD11, STD61. The results obtained are as follows. 1) The endurance limit of VC coated die steels was a little lower than that of hardened die steels. It is considered to be mainly due to the decfl.lase of hardness in the substrates. Accordingly, the endurance limit reo covered almost to the level of hardened die steels by an additional diffusion treatment. 2) The initiation point of fatigue fracture of VC coated die steels in reversed bening was on the substrate just under the VC layer. Hence, the endurance limit is corrected to the hardness of this part. 3) But, there is a considerable scatter in this relationship and the endurance limit of VC coated die steels was a little lower than that of hardened die steels with equal hardness. These results suggest that the fatigue strength of VC coated die steels is determined not only by the hardness but also by other factors. For example. the residual stress in the substrate just under VC coating layer is one of the factors besides hardness which is mainly related to the retained austenite(${\gamma}_R$).

  • PDF

Effects of Dietary Supplementation of Taurine, Carnitine or Glutamine on Endurance Exercise Performance and Fatigue Parameters in Athletes (타우린, 카르니틴 또는 글루타민 섭취가 운동선수의 지구력운동 수행능력 및 혈중 피로요소에 미치는 영향)

  • 이해미;백일영;박태선
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2003
  • The effects of taurine, carnitine or glutamine supplementation on endurance exercise performance along with related fatigue factors were evaluated in male college students in the Department of Physical Education, who's maximal oxygen consumption rates (VO$_2$max) were equivalent to those of endurance athletes. Twenty four subjects were randomly divided into 4 groups (n=6), and given placebo, taurine (4 g/day), carnitine (4 g/day), or glutamine (4 g/day) tablets for 2 weeks. Subjects could run 6.9 min or 9.0 min longer until exhausted on a treadmill at the intensity of 75% VO$_2$max following taurine or camitine supplementation for 2 weeks, respectively, compared to the value measured prior to each supplementation. Glutamine or placebo supplementation did not improve the endurance exercise performance based on the running time until exhausted on a treadmill. Serum lactate concentrations measured 1 hr after the initiation of the endurance exercise, as well as at all-out state tended to be decreased by taurine, carnitine, or glutamine supplementation, and were significantly lowered (43% decrease) by carnitine supplementation (p < 0.05). Taurine supplementation significantly reduced the serum inorganic phosphorus concentration measured at all-out state (14% decrease, p < 0.05), while carnitine supplementation significantly lowered the resting state serum inorganic phosphorus level (20% decrease, p < 0.05). Taurine (32% reduction) or carnitine (23% reduction) supplementation significantly decreased serum ammonia concentration measured at all-out state (p < 0.05). From these results, 4 g/day of taurine or carnitine supplementation appears to improve the endurance exercise performance and related human fatigue factors.

The Effect of Aging on the Mechanism of Muscle Fatigue during Sustained Submaximal Isometric Contraction (노화가 지속적 최대하강도 수축시 근피로 기전에 미치는 영향)

  • Yoon, Te-Jin;Kim, Yong-Won;Chung, Chul-Soo;Hunter, Sandra K
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.51-59
    • /
    • 2005
  • To examine the influence of aging on the mechanism of muscle fatigue, we compared the magnitude of central and peripheral fatigue in young and old women before, during and after a sustained submaximaI isometric contraction of elbow flexor muscles. Twelve women (6 young. $20.7{\pm}1.2$ years and 6 old, $68.8{\pm}29$ years) performed a contraction at 20% of maximal voluntary contraction (MVC) torque with their non-dominant arm. The old women were weaker than the young women, however their endurance time for the 20% contraction was longer compared with the young women ($1822{\pm}444$ vs. $1061{\pm}678$ sec, P <. 05). Both groups had a similar reduction in voluntary activation ratio (VA) during and after the fatiguing contraction. However, the old women showed much greater variability in VA before and after the contraction ($91.61{\pm}4.54%$ and $76.70{\pm}19.55\;%$ range of $79{\sim}99$ to $87{\sim}99%$ respectively) compared with the young women ($95.71{\pm}1.86\;%$ and $83.46{\pm}7.57\;%$ range of $39{\sim}75$ to $69{\sim}90%$, respectively). Furthermore, the EMG activity of the elbow flexor muscles and triceps brachii was greater for the old women compared with the young women throughout the fatiguing contraction, indicating different activation strategies with age. Indices of peripheral fatigue including twitch properties, showed that fatigue within the muscle was more rapid for the young women compared with the old women. These results suggest that although old women are weaker than young women, they have greater endurance due to mechanisms within muscle. Furthermore, old women showed great variability in their ability to optimally activate all muscle fiber compared with young women for an isometric contraction.