• 제목/요약/키워드: Fatigue Damage Analysis

검색결과 528건 처리시간 0.028초

불규칙 하중을 받는 휠에서의 피로 파손 해석 (Analysis of Fatigue Damage at Wheel under Variable Load)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.753-759
    • /
    • 2010
  • The variable fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by Ansys program. These results are successfully applied to the practical wheel to predict the prevention of fracture and the endurance. The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rain flow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainbow and damage matrices illustrate the possible effects of infinite life. The safety and stability of wheel and the other practical structures according to the variable load can be estimated by using the results of this study.

ABS 작동에 의한 캘리퍼하우징에 미치는 피로손상평가 (Fatigue Damage Analysis of the Caliper Housing under ABS Mode)

  • 김정엽;모종운
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.156-163
    • /
    • 1996
  • The brakes are the most important safety-critical accident avoidance components of a motor vehicle. They must perform safely under a variety of operating conditions and must have enough strength not to fail during the life of a vehicle. Recently, anti-lock brake systems are used on more and more passenger cars. The ABS brakes modulate brake line pressure to prevent brakes from locking during braking. In this study, finite element analysis, material test for FCD45, measurement of stress and cumulative fatigue damage analysis were performed to evaluate fatigue damage of the caliper housing under ABS mode.

  • PDF

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

타이로드의 구조적 내구성 해석 (Structural Durability Analysis of Tie Rod)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석 (Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation)

  • 정영호;김익겸;김지훈;김은성
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

레일표면손상이 접촉피로수명에 미치는 영향 (Effect of Rail Surface Damage on Contact Fatigue Life)

  • 서정원;이동형;함영삼;권성태;권석진;최하영
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

Fatigue Assessment of Steel Railway Bridge by Service Loading about 65 Years

  • Hong, Sung-Wook;Chai, Won-Kyu;Lee, Myeong-Gu
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.12-20
    • /
    • 2010
  • In this study, a series of random field test and dynamic analysis in the time domain were carried out in order to find in the reason of fatigue damage of the main and the secondary members in the 3-span continuous steel plate girder railway bridge being under in service over 60 years. From the measured and the analyzed results, the stress distribution patterns were investigated for the members with fatigue damage. In addition, global and local numerical stress analysis was performed for the members damaged severely by corrosion, to estimate variation of the distribution by corrosion. Finally, a reasonable cut-off ratio in the steel plate railway bridge will be proposed by analyzing the equivalent stress ranges according the ratio.

피로손상의 누적에 따른 강성변화를 고려한 점용접부의 진동피로해석 (Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage)

  • 강기원
    • 한국융합학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 본 논문의 목적은 진동 피로해석 기법을 적용하여 다수의 용접점을 포함하고 있는 점용접 구조물의 강성변화를 고려하여 피로수명을 평가하는 것이다. 먼저 모재부 인장특성 및 점용접부의 인장 및 피로특성을 획득하였다. 유한요소법을 적용하여 S-N 선도를 획득하여 피로해석에 적용하였다. 주파수 응답해석을 수행하여 구조물의 전달함수를 획득하였고, 주파수영역에서 0.11의 PSD를 선정하여 수행하였다. 강성변화 및 고유진동수의 변화를 알아보기 위하여 점용접부의 총 6개 지점 중 최소수명이 발생하는 지점을 기준으로 1개씩 제거하여 반복 해석을 수행하였다. 따라서 강성이 낮아질수록 고유주파수도 낮아지는 것을 확인하였다. 이러한 조건하에서 진동피로해석을 수행하여 피로손상의 누적에 따른 전달합수의 변화를 고려한 진동피로해석을 수행하였다.

Coupling effects between wind and train transit induced fatigue damage in suspension bridges

  • Petrini, Francesco;Olmati, Pierluigi;Bontempi, Franco
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.311-324
    • /
    • 2019
  • Long-span steel suspension bridges develop significant vibrations under the effect of external time-variable loadings because their slenderness. This causes significant stresses variations that could induce fatigue problems in critical components of the bridge. The research outcome presented in this paper includes a fatigue analysis of a long suspension bridge with 3300 meters central suspended span under wind action and train transit. Special focus is made on the counterintuitive interaction effects between train and wind loads in terms of fatigue damage accumulation in the hanger ropes. In fact the coupling of the two actions is shown to have positive effects for some hangers in terms of damage accumulation. Fatigue damage is evaluated using a linear accumulation model (Palmgren-Miner rule), analyses are carried out in time domain by a three-dimensional non-linear finite element model of the bridge. Rational explanation regarding the above-mentioned counterintuitive behavior is given on the basis of the stress time histories obtained for pertinent hangers under the effects of wind and train as acting separately or simultaneously. The interaction between wind and train traffic loads can be critical for a some hanger ropes therefore interaction phenomena within loads should be considered in the design.