• 제목/요약/키워드: Fatigue Curve

검색결과 475건 처리시간 0.026초

FE simulation of S-N curves for a riveted connection using two-stage fatigue models

  • Correia, Jose A.F.O.;de Jesus, Abilio M.P.;Silva, Antonio L.L.;Pedrosa, Bruno;Rebelo, Carlos;Calcada, Rui A.B.
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.333-348
    • /
    • 2017
  • Inspections of ancient metallic bridges have illustrated fatigue cracking in riveted connections. This paper presents a comparison between two alternative finite element (FE) models proposed to predict the fatigue strength of a single shear and single rivet connection. The first model is based on solid finite elements as well as on contact elements, to simulate contact between the components of the connection. The second model is built using shell finite elements in order to model the plates of the riveted connection. Fatigue life predictions are carried out for the shear splice, integrating both crack initiation and crack propagation lives, resulting from the two alternative FE models. Global fatigue results, taking into account several clamping stresses on rivet, are compared with available experimental results. Proposed comparisons between predictions and experimental data illustrated that the proposed two-stage model yields consistent results.

단일과대하중하에서 피로균열진전지연거동 및 지연수명의 확률론적 해석 (A Stochastic Analysis for Crack Growth Retardation Behavior and Prediction of Retardation Cycle Under Single Overload)

  • 심동석;김정규
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1164-1172
    • /
    • 1999
  • In this study, to investigate the fatigue crack retardation behavior and the variability of retardation cycles, fatigue crack growth tests were conducted on 7075-T6 aluminum alloy under single tensile overload. A retardation coefficient, D was introduced to describe fatigue crack retardation behavior and a random variable, Z to describe the variability of fatigue crack growth. The retardation coefficient was separately formulated according to retardation behavior which is composed of delayed retardation part and retardation part. The random variable, Z was evaluated from experimental data which was obtained from fatigue crack growth tests under constant amplitude load. Using these variables, a probabilistic model was developed on the basis of the modified Forman's equation, and retardation behavior and cycles were predicted under certain overload condition. The predicted retardation curve well agrees with the trend of experimental crack retardation behavior. And this model well predicts the scatter of experimental retardation cycles.

레일연마를 고려한 장대레일의 피로수명 평가 (The Fatigue Life Evaluation of CWR based on the Rail Grinding)

  • 공선용;성덕룡;박용걸
    • 대한토목학회논문집
    • /
    • 제35권5호
    • /
    • pp.1191-1198
    • /
    • 2015
  • 본 연구에서는 국내 일반철도 새마을호 동력차 및 궤도조건을 고려한 차량/궤도 상호작용해석을 수행하였다. 레일표면요철에 따른 레일휨응력을 분석하였고, 레일 휨응력예측식을 도출하였다. 또한, 일반철도 레일강의 S-N선도를 이용한 피로해석을 수행하였다. 파괴확률에 따른 레일피로수명을 산정하였고, 레일연마에 따른 레일표면요철 제거 및 레일휨응력 저감효과를 고려한 레일피로수명 평가를 수행하였다. 따라서, 국내 일반철도에서 레일연마 시행방법에 따른 레일피로수명을 평가하여 제시하였다.

STS301L 가스용접이음재의 가속수명에측에 관한 연구 (1. Plug and Ring type) (A study on Accelerated Life Prediction of Gas Welded joint of STS301L (1. Plug and Ring type))

  • 백승엽;배동호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1355-1360
    • /
    • 2008
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

  • PDF

유리섬유 보강 플라스틱관의 휨 피로 거동에 관한 실험적 연구 (An Experimental Study on the Flexural Fatigue Behavior of Glass fiber Reinforced Plastec Pipes)

  • 장동일;고재원
    • 한국재료학회지
    • /
    • 제4권2호
    • /
    • pp.219-226
    • /
    • 1994
  • 반복회수에 대한 하중-변형률 선도로부터 구산 잔류변형률의 비교 결과에서 피로하중하의 GFRP관의 강성은 GFRP관의 유리섬유의 적층수가 클수록 크게 나타났으며, 이러한 현상은 피로파괴 직전까지 나타났다. 아울러 본 피로실험 결과를 회귀분석하여 구한 S-N선도에 의하면 정적극한강도 백분율에 대한 피로강도는 GFRP관의 유리섬유 적층수가 증가할수록 증가하였으며, 유리섬유의 적층수가 15, 25, 35층인 GFRP관의 반복회수 200만회에 대한 피로강도는 정적극한강도는 각각 약 75.2%, 79.5%, 84.2%로 나타났다.

  • PDF

STS301L 가스용접이음재의 가속수명예측 자동화에 관한 연구 (Plug and Ring Type) (A Study on Accelerated Life Prediction Automation of Gas Welded Joint of STS301L (Plug and Ring Type))

  • 백승엽;손일선
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.1-8
    • /
    • 2011
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistical reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

SUS304L 겹침 용접부에 대한 극저온에서의 인장 및 피로강도에 관한 실험적 연구 (An Experimental Study on the Tensile and Fatigue Strengths of SUS304L Lap Joint Weld at the Cryogenic Temperature)

  • 김경수;부승환;박창열;조영근;이정수
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.96-102
    • /
    • 2008
  • As LNG tank is operated around $-162^{\circ}C$, an experimental approach on the cryogenic temperature tensile and fatigue strengths of SUS304L lap joint weld is very important at the design stage of membrane type LNG tank. In this study, in order to estimate the tensile and fatigue strengths of SUS304L lap joint weld at cryogenic temperature condition, tensile and fatigue tests were conducted. Also, S-N curves are presented with statistical testing method recommended by JSME. As a result of the experimental approach, the d£sign guide of fatigue strength is proposed and that is expected to be useful for membrane type LNG tank design.

파워스티어링 오일펌프용 풀리의 피로수명을 고려한 형상최적화 (Shape Optimization Considering Fatigue Life of Pulley in Power-Steering Pulley)

  • 심희진;김정규
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1041-1048
    • /
    • 2006
  • The pulley is one of core mechanical elements in the power steering system for vehicles. The pulley operates under both the compressive loading and the torque. Therefore, to assure the safety of the power steering system, it is very important to investigate the durability and the optimization of the pulley. In this study, the applied stress distribution of the pulley under high tension and torsion loads was obtained by using finite element analysis. Based on these results the fatigue life of the pulley with the variation of the fatigue strength was evaluated by a durability analysis simulator. The results at 50% and 1% for the failure probability were compared with respect to the fatigue life. In addition to the optimum design for the fatigue life is obtained by the response surface method. The response function utilizes the function of the life and weight factors. Within range for design life condition the minimization of the weight, one of the formulation, is obtained by the optimal design. Moreover the optimum design by considering its durability and validity is verified by the durability test.

초기균열간격에 따른 연속철근콘크리트 포장의 피로강도에 대한 실험적 연구 (Experimental Study on Fatigue Strength of Continuously Reinforced Concrete Pavements with Initial Transverse Cracks)

  • 박종섭
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1173-1178
    • /
    • 2007
  • 공용하중으로 인하여 초기 균열을 가지고 있는 연속철근콘크리트 포장체를 제작하여 피로시험을 실시하였다. 초기 균열의 영향을 검토하고자 4개의 시험체가 제작되었으며 시험체의 길이 및 축소비율을 유한요소해석 및 재료특성을 고려하여 결정하였다 피로시험에 앞서서 정적시험을 실시하여 정적파괴하중을 확인하고 균열발생 진행상황을 조사하였다. 피로시험 결과로부터 초기발생균열의 간격이 증가할수록 피로수명이 증가하는 것을 확인할 수 있었다. 본 연구의 결과는 국내고속도로에 건설된 연속철근콘크리트 포장의 유지보수에 적극 활용될 수 있을 것이다.

  • PDF

구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구 (An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress)

  • 강성원;김명현;김석훈;하우일
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.