• Title/Summary/Keyword: Fatigue Crack Propagation Behavior

Search Result 354, Processing Time 0.022 seconds

A Study on Fatigue Behavior of Two-Span Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 2경간 연속보의 피로거동에 관한 연구)

  • Kwak, Kae-Hwan;Cho, Seon-Jeong;Seok, In-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • As concrete structures are getting larger, higher, longer, and specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content by 0%, 0.75%, 1.00%, 1.25%, by experimental study of Two-spans Beam with Steel Fibrous with repeated loads. The ultimate load and the initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight was observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cycle loading to deflection relation and strain relation was observed by fatigue test. As the result of fatigue test, Two-spans Beam without Steel Fibrous was failed at 60~70% of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 67.2% by S-N curve. On the other hand, that with Steel Fibrous was failed at 65~85% of the static ultimate strength and it could be concluded fatigue strength to two million cycle around 71.7%.

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Microscopic Analysis of Effect of Shot Peening on Corrosion Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 부식피로거동에 미치는 쇼트피닝 효과에 대한 미시적 분석)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1381-1389
    • /
    • 2012
  • The object of this study considers corrosion fatigue improvement of 7075-T6 aluminum by using shot peening treatment on 3.5% NaCl solution at room temperature. Aluminum alloy is generally used in aerospace structural components because of the light weight and high strength characteristics. Many studies have shown that an aluminum alloy can be approximately 50% lighter than other materials. Mostly, corrosion leads to earlier fatigue crack propagation under tensile conditions and severely reduces the life of structures. Therefore, the technique to improve material resistance to corrosion fatigue is required. Shot peening technology is widely used to improve fatigue life and other mechanical properties by induced compressive residual stress. Even the roughness of treated surface causes pitting corrosion, the compressive residual stress, which is induced under the surface layer of material by shot peening, suppresses the corrosion and increases the corrosion resistance. The experimental results for shot peened specimens were compared with previous work for non treated aluminum alloy. The results show that the shot peening treatment affects the corrosion fatigue improvement of aluminum alloys and the induced compressive residual stress by shot peening treatment improves the resistance to corrosion fatigue.

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.