• 제목/요약/키워드: Fatigue Crack Propagation Behavior

검색결과 354건 처리시간 0.028초

혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload)

  • 송삼홍;이정무;홍석표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF

J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구 (A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters)

  • 허정원;박원조
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

열화상기술을 이용한 모멘트 변화에 따른 피로균열진전 연구 (A Study of the Fatigue Crack Propagation Behavior According to the Moment Change using Infrared Thermography)

  • 김경석;정현철;박찬주;정덕운;장호섭
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.359-364
    • /
    • 2010
  • The objective of this study is to propose an effective method for measurement and analysis of fatigue crack. A technique that can measure the statue of fatigue crack propagation fast and correctly for enhancing safety of constructions and securing reliability is necessary. Moreover, the crack propagation behavior characteristics evaluation technique has to be developed using this technique. In this paper, fatigue crack was caused via the fatigue experiment with repeated load on the CT specimen that is made up of STS304. Fatigue crack propagation was measured by tracing the position of the maximum temperature according to the cycles using infrared thermography. The crack growth characteristics was evaluated by applying the moment values on the measuring area to the measured value. As a result of this study, the possibility that the infrared thermography could be applied to measure the fatigue crack was identified. Moreover, it was identified that fatigue crack propagation have a relationship with the moment value of construction.

微小圓孔 및 微小슬릿材의 疲勞크랙 傳播擧動 (Behavior of Fatigue Crack Propagation of Micro-Hole and Micro-Slit Specimensns - For High-Frequency Heat Treantment Specimens -)

  • 송삼홍;윤명진
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.78-85
    • /
    • 1986
  • 본 연구에서는 결함재의 결함선단에 발생 전파하는 피로거동을 검토하기 위해서 미소원공과 미소슬릿을 가공하고, 이것들의 피로한도를 기준으로 해서 이들 결함의 형상이 피로크랙 전파특성에 미치는 영향을 상세히 고찰하고자 한다.

박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향 (Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

피로균열의 지연거동에 따른 수명예측 및 비파괴평가 (Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

단일 과대하중에 의한 레이저 용접 판재의 피로균열 전파거동 (Effect of Single Overload on the Fatigue Crack Growth Behavior of Laser Welded Sheet Metal)

  • 곽대순;김석환;오택열
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.161-169
    • /
    • 2004
  • In this study, we investigated fatigue crack growth behavior of laser welded sheet metal due to a single overload. Fatigue specimens were made using butt joint of cold rolled sheet metal that was welded by $CO_2$ laser. The fatigue crack propagation tests were performed in such a way that fatigue loading was parallel to the weld line while crack propagation was perpendicular to the weld line. Single overload was applied when fatigue crack tip was arrived near the weld line. The distances between the crack tip and the weld line at which a single overload was applied were 6, 4 and 2mm. The effect of specimen thickness and overload ratio on the fatigue behavior was determined. The plastic zone size of crack tip due to the single overload was determined from the finite element analysis. For investigating fatigue crack growth behavior, we used different thickness specimen 0.9mm and 2.0mm, and variable overload ratio applied fatigue crack propagation test. Also we used finite element analysis for investigating the plastic zone size of crack tip when single overload applied

혼합모드 하중에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior under Mixed Mode Loading)

  • 송삼홍;이정무;최병호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2000
  • Practical structures are subject not only to tension but also to shear and torsional loading. Even under uniaxial loading, when the load is not perpendicular to the crack plane, mixed mode crack can occur. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. In this study, the propagation behavior of the fatigue crack of the STS304 steels under mixed mode loading condition was investigated. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method with experimental results. The fatigue crack propagation under mixed mode was evaluated by the effective stress intensity factor proposed by Tanaka.

  • PDF

응력비 변화에 따른 혼합모드 피로균열 전파거동 (The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio)

  • 송삼홍;최지훈;이정무
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동 (Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method)

  • 송삼홍;서기정;이정무
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.