• Title/Summary/Keyword: Fatigue Crack Growth Length

Search Result 155, Processing Time 0.026 seconds

Detection and Sizing of Fatigue Cracks in Thin Aluminum Panel with Rivet Holes (리벳구멍을 가진 알루미늄 패널에서 피로균열의 탐지와 균열길이 측정)

  • Kim, Jung-Chan;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2007
  • The initiation of fatigue cracks in a simulated aircraft structure with a series of rivet holes was detected by acoustic emission(AE), then the crack length was determined by surface acoustic wave(SAW) technique. With the initiation and growth of fatigue cracks, AE events increased intermittently to form a stepwise incremental curve of cumulative AE events whereas the crack length increased more or less monotonically. With the SAW technique employed, the crack sizing for 13 different cracks including some short cracks was performed. With the reference to the measurement by traveling microscope, cracks in the range of $1{\sim}8mm$ long were reliably sized by the SAW technique. Although it was impossible to size the short fatigue cracks in the range shorter than 1 mm, the SAW technique still appeared practically useful for a range of crack lengths often found in aircraft structures.

A Study on the Anisotropy of Al 7075 Rolling Material in Fatigue Crack Growth Process (Al 7075 압연재의 피로균열 성장과정에서의 이방성에 관한 연구)

  • 최병기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.19-25
    • /
    • 1999
  • The research has extracted two kinds of specimen, one is rolling direction material(R-material) and the other rectangular of rolling direction(V-material), from Al alloy 7075 rolled. We have come to a conclusion by measuring crack propagation behavior with movement type microscope and Replica. 1) R-material shows 130% higher, approx. 39.2MPa in fatigue strength than V-material, approx. 29.4MPa. 2) In crack proportion, contrary to V-material growing directly toward specimen axis, R-material grows neared to shear direction. 3) The life proves that R-material is approx. 122% higher than V-material at 43.1MPa and approx. 135% higher at 47MPa. 4) The correlation between fatigue crack length and fracture life ratio applied to 'log(2a)=A+B ($N/N_f$)'equation shows inappropriate, because property value of Al alloy is low and the difference of chemical composition is high comparing with steel material.

  • PDF

Crack Growth Behavior of Tensile Overload for Small Load Amplitude (하중진폭이 작은 인장과대 하중의 균열성장 거동)

  • 유헌일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 aluminum alloy for small tensile overload under high-low block loading condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investigated by compliance method. The applied initial stress ratios are R=-0.5 R=0.0 and R=0.25 Crack length, effective stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc, are inspected with fracture mechanics estimate.

  • PDF

Evaluation of Delamination for Fiber Reinforced Composite Material without Crack (균열이 발생하지 않는 섬유강화 복합재료의 층간분리 평가법)

  • 송삼홍;김철웅;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1349-1353
    • /
    • 2003
  • Previous researches for fiber reinforced composite material(FRCM) have been evaluated the fatigue delamination behavior using the traditional fracture mechanics parameters. Therefore. previous researches for FRCM have not generally been firmed yet. Because delamination growth behavior in FRCM should be consider relationship between delamination area, A$\sub$D/ and crack length, a instead of traditional fracture mechanics parameters. Especially, in case of delamination behavior for FRCM without crack should be considering equivalent crack, i.e., pseudo crack, a$\sub$p/, using the fracture behavior of FRCM with crack. The major purpose of this study was to evaluate the delamination for FRCM without crack. The details of the studies are as follow : 1) Relationship between crack growth rate, da/dN and stress intensity factor, ΔK in FRCM containing a saw-cut and circular hole with crack. 2) Propose of PSEUDO CRACK MODEL for the delamination in FRCM without crack. 3) Analysis of crack propagation energy, E$\sub$crack/ using a total energy, E$\sub$total/ and delamination growth energy, E$\sub$del/.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

A Study on Fatigue Crack Growth Behavior and R-Curve Characteristics of Gas Piping Material (가스배관재의 피로균열진전거동과 파괴저항특성곡선에 관한 연구)

  • Son, J.D.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.127-133
    • /
    • 2007
  • SG-365 steel is an important material and used for manufacturing a pressure vessel which the gas piping. In this investigation, the elastic plastic fracture toughness of this material is evaluated by the unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the elastic plastic fracture toughness. The side grooved specimen is very useful in estimation of the $J_{IC}$. It is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides, it improves the accuracy of toughness values, decreases a phenomenon of the tunneling and shear lip by the side groove.

  • PDF

Fatigue Life Estimation of Cruciform Welded Joint Considering Interaction, Coalescence and Growth of Multi-crack (다균열 간섭, 합체, 성장이론을 고려한 십자형 필렛용접 이음부의 피로균열진전수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Cheon;Rim, Jeon;Jim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.120-125
    • /
    • 2004
  • Fatigue life of welded joints are governed by the propagation of multiple collinear surface cracks distributed randomly along weld bead. These cracks propagate in mutual interaction and coalescence of them. To estimate the fatigue life, the influences of above two mechanisms on the fatigue life should be taken into account. These two mechanisms appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of multiple surface cracks located in vicinity of weld toe. The stress intensity factors are calculated normally by using the Mk-factors, but such Mk-factors are very rare in literature. In this study, the Mk-factors were obtained from a parametric study on crack length and depth, in which a finite element method is used. A fatigue test for a cruciform welded joint was conducted. The fatigue life of the tested specimen was estimated through present method with the informations obtained from the test, e.g. the number, size and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

  • PDF

A Study on Prediction of Stress Intensity Factor and Fatigue Crack Growth Behavior Using the X-ray Diffraction Technique (X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구)

  • Lim, Man-Bae;Boo, Myung-Hawn;Kong, Yu-Sik;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.673-680
    • /
    • 2003
  • This study verified the relationship between fracture mechanics parameters(ΔK, ΔK$\sub$eff/, K$\sub$max/) and X-ray parameters (${\alpha}$$\sub$r/, B) for SG365 steel at elevated temperature up to 300$^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ΔK region, reach to a maximum value at a certain value of K$\sub$max/ or ΔK and then decrease. Residual stress were independent on stress ratio by arrangement of ΔK and half value breadth were independent by the arrangement of K$\sub$max/. The equation of ${\alpha}$$\sub$r/ - ΔK was established by the experimental data. Therefore, tincture mechanics parameters could be estimated by the measurement of X-ray parameters.

A Study on the X-ray Diffraction Analysis and the Fatigue Crack Growth Behavior for the Gas Piping Material (가스배관재의 X-선 회절분석과 피로균열거동에 관한 연구)

  • 임만배;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.54-58
    • /
    • 2002
  • This study investigates a relationship between fracture mechanics parameters (Stress Intensity Factor Range: ΔK, Maximum Stress Intensity Factor; Kmax) and X-ray parameters (residual stress:$\sigma$r half-value breadth: B) for SG365 steel at elevated temperature up to 30$0^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to the direction of crack length was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase at low ΔK region, to reach a maximum value at a certain value of Kmax or ΔK and then to decrease. Residual stress was independent of stress ratio by arrangement of ΔK and half value breadth were independent of the arrangement of Kmax. The equation of $\sigma$r-ΔK was established by the experimental data. therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

A study on prediction of stress intensity factor and fatigue crack growth behavior using the X-ray diffraction technique (X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구)

  • Lim, Man-Bae;Kong, Yu-Sik;Boo, Myung-Hawn;Cha, Gee-Jun;Yoon, Han-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.317-323
    • /
    • 2001
  • This study verified the relationship between fracture mechanics parameters$({\Delta}K,\;{\Delta}K_{eff},\;K_{max})$ and X-ray parameters $(\sigma_r,\;B)$ for SG365 steel at elevated temperature up to $300^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ${\Delta}K$ region, reach to a maximum value at a certain value of $K_{max}\;or\;{\Delta}K$ and then decrease. Residual stress were independent on stress ratio by arrangement of ${\Delta}K$ and half value breadth were independent by the arrangement of $K_{max}$. The equation of $\sigma_r-{\Delta}K$ was established by the experimental data. Therefore, fracture mechanics parameters could be estimated by the measurement of X-ray parameters.

  • PDF