• 제목/요약/키워드: Fatigue Correction Factor

검색결과 26건 처리시간 0.019초

가압기 밀림관 환경피로평가를 위한 피로보정계수 적용에 관한 연구 (A Study on Application of Fatigue Correction Factor for Environmental Fatigue Evaluation of Pressurizer Surge Line)

  • 양준석;박치용;강선예
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1151-1157
    • /
    • 2009
  • Nuclear power plants applying for the continued operation over design life are required to address the effects of reactor water environment in fatigue design requirement of the ASME Code. Reactor water environmental effects are generally evaluated by calculating fatigue correction factors on fatigue usage. This paper describes the application for pressurizer surge line of environmental fatigue correction factors and the strain rate impact in the application. From this paper, the environmental fatigue correction factors resulted from the assumption of a step change in temperature are especially compared with those calculated from the data measured during plant startup. As a conclusion of this paper, the design transient conditions applied to the fatigue design may be conservative in case of the environmental fatigue evaluation.

강판항(鋼板桁) 덮개판 형상에 따른 피로균열성장특성 (Fatigue Crack Growth Characteristics by the Cover Plate Shapes in the Steel Plate Girder)

  • 정영화;김익겸;정진석;이형근
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.269-278
    • /
    • 1999
  • When a variety of repeated loads are given, most steel structures failed in much lower level of loads than static failure loads. In addition, bridge always includes the internal defects or discontinuities. from these, fatigue cracks initiates and can lead to sudden failure. Thus, in this study, tensile specimens by the cover plate shapes were used as the test specimens. The fatigue test was performed by constant amplitude fatigue loading and beach mark. From the results of this study, each specimen's fatigue section was observed. in addition, stress intensity factor at crack tip was calculated by using the Green's function which applied to discontinuous section where causing stress concentration. Therefore, the fatigue life of structural detail was investigated by adopting the theories of fracture mechanics. each specimen's crack shape is a semi-elliptical surface crack or center crack sheet, stress gradient correction factor, Fg is the most subjective of all stress intensity correction factors and fatigue life should be predicted by previous proposed function and finite element analysis.

  • PDF

용접지단부 TIG처리에 의한 피로강도향상 및 피로특성 (Fatigue Strength Improvement and Fatigue Characteristics by TIG-Dressing on Weld Bead Toes)

  • 정영화;김익겸;남왕현;장동휘
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.169-178
    • /
    • 2000
  • The 4-point bending tests have been performed In order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strengths of as-welded specimens have satisfied the grade of fatigue strength prescribed in specifications of korea, AASHTO and JSSC. Fatigue strength at 2 million cycles of TIG-dressing specimens have increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks occurred at several points, where the radius of curvature and flank angle in the weld bead toes were low, and grew as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has closely related to the flank angle and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

용접후처리에 따른 하중비전달형 필렛용접부의 피로특성 (Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints According to Post-Processing)

  • 홍성욱
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.161-168
    • /
    • 2010
  • A series of fatigue tests have been performed on the non-load carrying fillet welded joints in order to quantitatively assess the fatigue characteristics due to the grindings and TIG(Tungsten Inert Gas) welding treatments. From the results of fatigue tests, it has been shown that the fatigue strengths at $2{\times}106$ load cycles were improved in the case of the grinding sand TIG welding treatments, and we could know that it is satisfying fatigue strength prescribed in fatigue design standard in general. Besides, from the results of fracture mechanics approaches, the geometric shape correction factors were the most dominant factors in the initial fatigue crack growth, but as the fatigue crack develops, the finite plate correction factor were became the most dominant factor, and the fatigue life on non-load carrying fillet welded joints could be relatively exactly estimated by using the relations between fatigue crack growth rate and stress intensity factor obtained from finite element analysis and existing proposed formulae.

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

응력 수정 계수를 고려한 피로 제약 조건 구조물의 위상최적설계 (Fatigue Constrained Topological Structure Design Considering the Stress Correction Factor)

  • 김대훈;안기수;정승환;박순옥;유정훈
    • 한국전산구조공학회논문집
    • /
    • 제31권2호
    • /
    • pp.97-104
    • /
    • 2018
  • 본 논문에서는 페이즈필드 설계법 기반의 피로 제약 조건 구조물의 위상최적설계를 수행하였다. 페이즈필드 설계법의 도입으로 기존의 위상최적설계법에서 발생하기 쉬운 중간 영역의 크기를 크게 감소시켰다. 수정된 upper bound P-norm의 도입으로 모든 지점의 응력 성분을 고려하면서, 전역적 응력값이 국부적 최대 응력값과 근사한 값을 가질 수 있도록 설정하였다. 또한 기존의 피로 파괴 제약 조건 위상최적설계에서 다루지 않았던 응력 수정 계수에 대한 고려를 위하여 위상최적설계 결과물의 1차 주응력 성분을 고려하여 응력 수정 계수를 도입하고 이에 따라 허용 응력 진폭 값을 수정 하였다. 이를 통하여 인장 응력으로 인한 내구 한도 감소 요인을 반영한 체계적인 설계 방안을 제시하였다.

TIG처리에 따른 하중비전달형 필렛용접부의 피로특성 (An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints)

  • 정영화;경갑수;홍성욱;김익겸;남왕현
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.617-628
    • /
    • 2000
  • 이 연구에서는 하중비전달형 필렛용접부를 대상으로 순수휨상태에서 TIG 처리에 따른 피로강도 향상정도 및 피로특성을 정량적으로 평가하기 위해서 4점 휨실험을 실시하였다. 피로실험결과 용접후처리를 실시하지 않은 시험체는 국내 외에서 규정하는 피로강도등급을 만족하고 있고 TIG 처리한 시험체는 용접후처리를 실시하지 않은 시험체보다 $2{\times}106$회 피로강도가 상회하는 것을 알 수 있었다. 또한 비치마크실험결과 피로균열은 용접지단부의 비드접선각도 및 곡률반경이 최소로 되는 점에서 다발적으로 발생하며, 반타원형 균열로 성장, 합체되어 파단에 이르는 것을 확인할 수 있었다. 한편 유한요소해석결과 용접지단부의 응력집중계수는 용접지단부의 비드접선각도 및 곡률반경과 밀접한 관계가 있으며, 이 중에서 곡률반경이 용접지단부의 응력집중계수에 보다 큰 영향을 미치는 것을 알 수 있었다. 한편 파괴역학적 해석결과 a/t가 0.4 이하인 경우에 기하학적형상보정계수가 균열보정계수에 가장 지배적인 영향을 미치는 인자임을 알 수 있었다. 또한 유한요소해석결과로부터 산정한 응력확대계수범위와 피로균열성장속도의 관계식으로부터 피로수명을 비교적 정확하게 산정할 수 있었다.

  • PDF

등가 단위하중을 이용한 동체 구조물 피로수명 평가 (Fatigue life evaluation for fuselage structure using equivalent unit load)

  • 김성준;안석민;염찬홍
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.13-18
    • /
    • 2009
  • 본 연구에서는 피로해석을 단순화하기위한 등가 단위하중 방법을 제시하였다. 그리고 등가 단위하중을 이용하여 동체구조물의 피로수명을 평가하였다. 균열진전해석에 필요한 응력확대 계수와 기하학적 형상계수를 계산하기 위하여 유한요소 해석을 수행하였다. 또한 균열진전 방향을 평가하기 위하여 변형률 에너지 밀도 계수를 사용하였다.

  • PDF

Bi-modal spectral method for evaluation of along-wind induced fatigue damage

  • Gomathinayagam, S.;Harikrishna, P.;Abraham, A.;Lakshmanan, N.
    • Wind and Structures
    • /
    • 제9권4호
    • /
    • pp.255-270
    • /
    • 2006
  • Several analytical procedures available in literature, for the evaluation of wind induced fatigue damage of structures, either assume the wide band random stress variations as narrow band random process or use correction factors along with narrow band assumption. This paper compares the correction factors obtained using the Rainflow Cycle (RFC) counting of the measured stress time histories on a lamp mast and a lattice tower, with those evaluated using different frequency domain methods available in literature. A Bi-modal spectral method has been formulated by idealising the single spectral moment method into two modes of background and resonant components, as considered in the gust response factor, for the evaluation of fatigue of slender structures subjected to "along-wind vibrations". A closed form approximation for the effective frequency of the background component has been developed. The simplicity and the accuracy of the new method have been illustrated through a case study by simulating stress time histories at the base of an urban light pole for different mean wind speeds. The correction factors obtained by the Bi-modal spectral method have been compared with those obtained from the simulated stress time histories using RFC counting method. The developed Bi-modal method is observed to be a simple and easy to use alternative to detailed time and frequency domain fatigue analyses without considerable computational and experimental efforts.