• Title/Summary/Keyword: Fatigue Behavior Parameter

Search Result 76, Processing Time 0.024 seconds

Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy (Mg-Al-Zn 합금의 Paris-Erdogan 법칙에 따른 피로거동 파라미터의 확률론적 특성)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.375-381
    • /
    • 2011
  • The primary aim of this study is to investigate the probabilistic characteristics of the fatigue parameters that describe the fatigue crack growth behavior in magnesium alloy. Statistical fatigue crack propagation experiments have been performed on rolled AZ31 magnesium alloy CT specimens with different specimen thickness, load ratio, and maximum load at ambient temperature in a laboratory. Using the statistical fatigue data obtained from these experiments, the goodness-of-fit of the probability distribution of the fatigue behavior parameters is evaluated in this study by performing statistical analyses. The crack growth rate coefficient is a fatigue parameter having a very large COV(Coefficient of Variation), but the variation of a crack growth rate exponent is not substantial. It is considered that a crack growth rate exponent can be a material constant. It is also found that the best fit probability distribution of the parameters such as the crack growth rate coefficient and crack growth rate exponent for a magnesium alloy is a three-parameter Weibull distribution, and two-parameter Weibull distribution is a good distribution only for the crack growth rate coefficient.

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

Probabilistic Fatigue Crack Growth Behavior under Constant Amplitude Loads (일정진폭하중하의 확률론적 피로균열전파거동)

  • Jeong, Hyeon-Cheol;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.923-929
    • /
    • 2003
  • In this paper, an analysis of fatigue crack growth behavior from a statistical point of view has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Weibull. The fatigue crack growth rate seems to follow the 3-parameter Weibull and the log-normal distribution. The coefficient of variation (COV) of fatigue crack growth life was observed to decrease as the crack grows. Fatigue crack growth rate data shows a normal distribution for both m and logC. A strong negative linear correlation exists between the coefficient C and the exponent m.

A Model for Fatigue Life In CFRP Laminates with Impact Damage (충격손상을 가진 CFRP 적층복합재료의 피로수명예측모델)

  • Gang, Gi-Won;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2828-2835
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials, The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree will with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

Fatigue Characteristics in CFRP Laminates with Impact Damage (충격손상 CFRP 적층복합재료의 피로특성)

  • Kang, Ki-Weon;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.225-230
    • /
    • 2000
  • This paper presents the fatigue behavior of composite materials with impact-induced damage. The impact damage parameter is proposed to evaluate the effect of impact damage on fatigue life. Subsequently, a new model is developed to predict the fatigue life of impacted composite materials. Also, a stochastic model is proposed to describe the variation of fatigue life due to the material nonhomogeneity. For these models, the fatigue tests were performed on the unimpacted and impacted composite materials. The effect of impact damage on fatigue life can be characterized by the impact damage parameter. Additionally, the results by the present fatigue life prediction model agree well with experimental results regardless of applied impact energy. Also, the variation of fatigue life can be described by the present stochastic model and is reduced with applied impact energy.

  • PDF

A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron (구상흑연주철의 피로수명분포에 대한 통계적 해석)

  • Jang, Seong-Su;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2353-2360
    • /
    • 2000
  • Statistical fatigue properties of metallic materials are increasingly required for reliability design purpose. In this study, static and fatigue tests were conducted and the normal, log-normal, two -parameter Weibull distributions at the 5% significance level are compared using the Kolmogorov-Smirnov goodness-of-fit test. Parameter estimation were compared with experimental results using the maximum likelihood method and least square method. It is found that two-parameter Weibull distribution and maximum likelihood method provide a good fit for static and fatigue life data. Therefore, it is applicable to the static and fatigue life analysis of the spheroidal graphite cast iron. The P-S-N curves were evaluated using log-normal distribution, which showed fatigue life behavior very well.

Fatigue Crack Behavior of Triple Piece Spot by Crack Tip Opening Angle of Welded Specimen (3중 점용접재의 귤열단 열림각(CTOA)을 이용한 피로균열거동)

  • Song, Sam-Hong;Joo, Dong-Ho;Yang, Yun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, internal fatigue crack initiation and propagation behavior were investigated by triple piece spot welded specimen. To estimate fatigue life of the specimen varied with shape and thickness, Crack tip opening angle(CTOA) correlated with stress intensity factor was used as the stiffness parameter. The relation between fatigue life and CTOA can be arranged by the quantitative equation for each specimen by experiment. In addition, the variation of stress distribution was solved and the effect on fatigue crack behavior was examined by finite element method(FEM).

  • PDF

Evaluation of Creep Fatigue Crack Growth Behavior of 9Cr Steel Employing Creep Reversal Parameter (크리프 역전 변수 도입에 의한 9Cr강의 크리프 피로 균열성장 거동의 평가)

  • Ma, Young-Wha;Baek, Un-Bong;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1453-1460
    • /
    • 2002
  • Creep-fatigue crack growth models have been proposed employing $(C_t)_{avg}$ as a crack tip parameter characterizing the time-dependent crack growth. The basic assumptions made in these previous models were ideal creep reversal conditions such as no creep reversal and complete creep reversal condition. Due to this assumption, the applicability of the models was limited since they did not consider partial creep reversal condition which is usually observed in many engineering metals at high temperature. In this paper the creep reversal parameter, Temperature;$C_R$, which was defined by Grover, is critically evaluated to quantity the extent of partial creep reversal at the crack tip. This approach does not rely on any simplifying assumptions regarding the extent of the amount of creep reversal during the unloading part of a trapezoidal fatigue cycles. It is shown that the $(C_t)_{avg}$ value calculated for 9Cr steel agrees well with the experimentally measured one. It is argued that the extent of improvement is not significant when the result is compared with that of the conventional model which has an assumption of full creep reversal behavior.

A Probabilistic Analysis for Fatigue Cumulative Damage and Fatigue Life in CFRP Composites Containing a Circular Hole (원공을 가진 CFRP 복합재료의 피로누적손상 및 피로수명에 대한 확률적 해석)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1915-1926
    • /
    • 1995
  • The Fatigue characteristics of 8-harness satin woven CFRP composites with a circular hole are experimentally investigated under constant amplitude tension-tension loading. It is found in this study that the fatigue damage accumulation behavior is very random and history-independent, and the fatigue cumulative damage is linearly related with the mean number of cycles to a specified damage state. From these results, it is known that the fatigue characteristics of CFRP composites satisfy the basic assumptions of Markov chain theory and the parameter of Markov chain model can be determined only by mean and variance of fatigue lives. The predicted distribution of the fatigue cumulative damage using Markov chain model shows a good agreement with the test results. For the fatigue life distribution, Markov chain model makes similar accuracy to 2-parameter Weibull distribution function.