• Title/Summary/Keyword: Fat Accumulation

Search Result 567, Processing Time 0.023 seconds

The Effects of Fructose Polymer Levan on the Body Fat Accumulation and Serum Lipid Profiles of Korean Women (레반 Diet 섭취에 의한 한국 여성의 체지방 축적 억제와 혈중 지질의 개선 효과)

  • 강순아;장기효;이재철;장병일;임영애;송병춘
    • Korean Journal of Community Nutrition
    • /
    • v.8 no.6
    • /
    • pp.986-992
    • /
    • 2003
  • This study was performed to investigate the effects of a levan diet on the body fat accumulation and serum lipid composition of 29 Korean women over a period of up to 12 weeks (n=13 for the control group, n=16 for the levan group). The subjects ate an uncooked diet (6 g) with 400$m\ell$ of tap water twice a day. The mean body weight and height measurements of the subjects (levan group) at the outset were 66.0$\pm$8.8kg and 156.7$\pm$5.3cm, respectively. The subjects showed a significant reduction in weight, body fat mass, anthropometric measurements and skinfold thickness during the experimental period. The waist hip ratio (WHR) was 0.88$\pm$0.03 at the outset, and fell to 0.82$\pm$0.05 after 4 weeks. The intake of levan was also influenced on the levels of serum Fe, leptin, lipoprotein lipase, HDL-cholesterol, LDL-cholesterol, and triglyceride. The serum glucose levels were within the normal range during the experimental period. The initial serum triglyceride level was 121mg/dl, but fell to 103mg/dl after 4 weeks of levan supplementation. The current study demonstrates that a levan diet is effective in controlling weight, body fat, HDL-cholesterol, LDL-cholesterol, and triglyceride levels.

Effect of Thyroid hormone on Lipogenesis in Rat White and Brown Adipocytes Culture System

  • Kim, Yangha -Moon
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.362-367
    • /
    • 1998
  • Thyroid hormone(T3) stimulates hepatic lipogenesis by increasing expression of genes, indluding acetyl-CoA carboxylase and fatty acid synthase. S14 protein, which is thougth to be involved in lipid metabolism , appears to respond in parallel . Effect of T3 on lipogenesis in white and brown adipose tissue are less clear, and may be complicated by indirect effects of the hormone. We developed an adipocytes system where the indirect effects of thyroid hormone are abolished and direct effects of T3 on lipogenesis could be tested. Fat accumulation was mesured by Oil-Red O staining. Insulin clearly enhanced fat accumulation by 2-fold . Isobutylemethylxanthie(IBMX) apeared to inhibit insulin -stimulated fat accumulation. Dexamethasone increased insulin-stimulatedfat accumulation about 1.3-fold. confluent adipocytes were cultured in serum-free medium or medium containing 10% fetal calf serum or 10% fetal calf serum stripped of thyroid hormone and lipogenesis, assessed by the incorporation of 3H2O , was measured. Medium without serum or supplemented with T3-depleted serum did not amplify the stimulatory effect of T3 on lipogenesis compared to medium containing 10% fetal calf seru. Dexamethasone alone led to a decrease inlopogenesis of about 50 % in white adipocytes and 25% in brown adipocytes. However, dexamethasone amplified the lipogenic respnse to T3 by about 30% in whit eadipocytes and 60% in brown adipocytes. T3(1$\mu$M) stimulated lipogenesis and acetyl-CoA carboxylase and fatty acid syntase mRNA levels up to 2 -fold in both types of adipocytes. It seems that these adipocytes systems are as useful model to study the effects of hormones on lipogenic gene expression as well as lipogenesis.

  • PDF

In vitro hepatocyte inflammation by chaparral extract (Chaparral 추출물에 의한 in vitro 간세포 염증반응)

  • Kim, Ilrang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.344-347
    • /
    • 2021
  • In this study, the hepatotoxic mechanism of chaparral (Larrea tridentata) was investigated through in vitro experiments that measured cell death, inflammatory cytokine secretion, and intracellular fat accumulation by treating HepG2 hepatocytes with a 70% ethanol extract of chaparral at concentrations ranging from 0.001 to 100 ㎍/mL. Cell death was observed after treatment with chaparral extract at concentrations of 1-100 ㎍/mL (p<0.05). The secretion of the inflammatory cytokines, interleukin-8 and macrophage-colony stimulating factor, and fat accumulation were significantly increased even at a concentration of 0.1 ㎍/mL, which was 10 times lower than the observed concentration resulting in cell death (p<0.05). Hepatitis caused by inflammatory cytokine secretion and fat accumulation was shown to be a form of hepatotoxicity induced by chaparral extract. Hepatitis was expressed at a concentration lower than that causing serious toxicity such as cell death, suggesting that hepatotoxicity, including hepatitis, may be caused by ingestion of low concentrations of chaparral.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

Antioxidant and Anti-Obesity Effects of Juglans mandshurica in 3T3-L1 Cells and High-Fat Diet Obese Rats

  • Da-Hye Choi;Min Hong;Tae-Hyung, Kwon;Soo-Ung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.634-643
    • /
    • 2024
  • Juglans mandshurica Maxim. walnut (JMW) is well-known for the treatment of dermatosis, cancer, gastritis, diarrhea, and leukorrhea in Korea. However, the molecular mechanism underlying its antiobesity activity remains unknown. In the current study, we aimed to determine whether JMW can influence adipogenesis in 3T3-L1 preadipocytes and high-fat diet rats and determine the antioxidant activity. The 20% ethanol extract of JMW (JMWE) had a total polyphenol content of 133.33 ± 2.60 mg GAE/g. Considering the antioxidant capacity, the ABTS and DPPH values of 200 ㎍/ml of JMWE were 95.69 ± 0.94 and 79.38 ± 1.55%, respectively. To assess the anti-obesity activity of JMWE, we analyzed the cell viability, fat accumulation, and adipogenesis-related factors, including CCAAT-enhancer-binding protein alpha (C/EBPα), sterol regulatory element-binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). We found that total lipid accumulation and triglyceride levels were reduced, and the fat accumulation rate decreased in a dose-dependent manner. Furthermore, JMWE suppressed adipogenesis-related factors C/EBPα, PPARγ, and SREBP1c, as well as FAS and ACC, both related to lipogenesis. Moreover, animal experiments revealed that JMWE could be employed to prevent and treat obesity-related diseases. Hence, JMWE could be developed as a healthy functional food and further explored as an anti-obesity drug.

Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat

  • Yeon, Su-Jung;Hong, Go-Eun;Kim, Chang-Kyu;Park, Woo Joon;Kim, Soo-Ki;Lee, Chi-Ho
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

Effects of Gami-Handayeolso-Tang on Body Fat Reduction in High Fat Diet-Fed Obese Mice (가미한다열소탕(加味寒多熱少湯)이 고지방식이 비만생쥐의 체지방감소에 미치는 영향)

  • Lee, Ha-Il;Lee, Jong-Ha;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.1
    • /
    • pp.13-31
    • /
    • 2016
  • Objectives In this study, it was investigated whether Gami-Handayeolso-Tang (HDYST) medication has anti-obesity effects in high fat diet (HFD)-fed obese mice. Methods The experimental animals were divided into five groups-normal diet-fed (ND), high fat diet-fed control (HFD), HFD+HDYST 150, HFD+HDYST 300, and HFD+orlistat as a positive drug. The obese markers such as body weight, diet efficiency ratio, serum levels of total cholesterol, triglyceride, lipid contents, leptin, adiponectin, and GOT/GPT were measured. Also, white adipose tissue, liver weight, abdominal fat mass, hepatic lipid contents, and mRNA expression of obese-associating genes were examined in obese mice. Results In high fat diet-fed mice, HDYST administration significantly decreased body weight, diet efficiency ratio, serum levels of total cholesterol, triglyceride, LDL-cholesterol, as well as leptin and GOT/GPT, compared to the HFD group in a dose-dependent manner. HDYST increased significantly the serum levels of HDL-cholesterol and adiponectin. It also reduced the accumulation of lipids, such as total lipid and triglycerides, in organs such as liver and abdominal adipose tissue. Moreover, HDYST administration significantly decreased the expression levels of fatty acid synthetic genes, such as sterol regulatory element-binding protein-1c (SREBP-1c), FAS and Stearoyl-Coenzyme A desaturase 1 (SCD-1), in the liver tissues, while it increased the messenger RAN (mRNA) levels of fatty acid catalytic genes, such as Peroxisome proliferator activated receptor alpha (PPAR-${\alpha}$), acyl-COA oxidase (ACO), and Carnitine palmitoyltransferase-1a (CPT-1a). Conclusions Based on the results above, HDYST reveals anti-obesity effects declining body fat accumulation through the regulation of fatty acid metabolism and leptin/adiponectin serum levels. It therefore suggests that HDYST can be clinically useful for the treatment of obesity.

Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review

  • Fouad, A.M.;El-Senousey, H.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1057-1068
    • /
    • 2014
  • The major goals of the poultry industry are to increase the carcass yield and to reduce carcass fatness, mainly the abdominal fat pad. The increase in poultry meat consumption has guided the selection process toward fast-growing broilers with a reduced feed conversion ratio. Intensive selection has led to great improvements in economic traits such as body weight gain, feed efficiency, and breast yield to meet the demands of consumers, but modern commercial chickens exhibit excessive fat accumulation in the abdomen area. However, dietary composition and feeding strategies may offer practical and efficient solutions for reducing body fat deposition in modern poultry strains. Thus, the regulation of lipid metabolism to reduce the abdominal fat content based on dietary composition and feeding strategy, as well as elucidating their effects on the key enzymes associated with lipid metabolism, could facilitate the production of lean meat and help to understand the fat-lowering effects of diet and different feeding strategies.

Crude Extract and Solvent-Partitioned Fractions of the Halophyte Atriplex gmelinii Inhibit Adipogenesis in 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 염생식물 Atriplex gmelinii의 조추출물과 용매 분획물의 지방세포분화 억제)

  • Jung Im Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.69-77
    • /
    • 2023
  • Objectives: Atriplex gmelinii C. A. Meyer is a halophyte belonging to the Chenopodiaceae family, and its young leaves and stems are used as fodder for livestock. The aim of the present study was to investigate the effects of A. gmelinii extract and its solvent fractions on lipid accumulation during adipogenesis of 3T3-L1 preadipocytes. Methods: The samples of A. gmelinii were separately extracted using methylene chloride and methanol. Subsequently, they were combined to formulate the initial extract, which was then partitioned based on polarity to prepare solvent fractions. Oil Red O staining was employed to measure lipid accumulation during the differentiation of 3T3-L1 preadipocytes. To verify cytotoxicity in 3T3-L1 cells, MTT assays were conducted. The expression levels of transcription factors in 3T3-L1 preadipocytes were measured through Western blotting analysis. Results: At 50 ㎍/mL, treatment of A. gmelinii extract and its solvent fractions during the differentiation of 3T3-L1 preadipocytes significantly diminished lipid accumulation with no noteworthy cytotoxicity on cell viability. Additionally, when investigating the biochemical pathways that underlie the prevention of lipid accumulation using solvent fractions, it was found that the n-BuOH and n-hexane fractions significantly decreased the expression of key transcription factors involved in the generation of fat, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP1c). Conclusions: These findings indicate that A. gmelinii can effectively reduce the accumulation of fat in 3T3-L1 adipocytes, making it a potentially valuable material for mitigating and preventing obesity.