• 제목/요약/키워드: Fasteners

검색결과 110건 처리시간 0.024초

일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구 (A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener)

  • 양신추;장승엽;김은;유진영;홍성모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

Experimental and numerical investigation of track-bridge interaction for a long-span bridge

  • Zhang, Ji;Wu, Dingjun;Li, Qi;Zhang, Yu
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.723-735
    • /
    • 2019
  • Track-bridge interaction (TBI) problem often arises from the adoption of modern continuously welded rails. Rail expansion devices (REDs) are generally required to release the intensive interaction between long-span bridges and tracks. In their necessity evaluations, the key techniques are the numerical models and methods for obtaining TBI responses. This paper thus aims to propose a preferable model and the associated procedure for TBI analysis to facilitate the designs of long-span bridges as well as the track structures. A novel friction-spring model was first developed to represent the longitudinal resistance features of fasteners with or without vertical wheel loadings, based on resistance experiments for three types of rail fasteners. This model was then utilized in the loading-history-based TBI analysis for an urban rail transit dwarf tower cable-stayed bridge installed with a RED at the middle. The finite element model of the long-span bridge for TBI analysis was established and updated by the bridge's measured natural frequencies. The additional rail stresses calculated from the TBI model under train loadings were compared with the measured ones. Overall agreements were observed between the measured and the computed results, showing that the proposed TBI model and analysis procedure can be used in further study.

고정밀 체결토크 성능 너트런너 시스템 개발 (Development of High Precision Fastening torque performance Nut-runner System)

  • 김윤현;김솔
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.35-42
    • /
    • 2019
  • 현재 자동차 산업과 함께 발전하고 있는 전자제품을 포함하는 전반적인 제조업 분야에서 초정밀 제어를 요하는 너트 체결기가 요구되고 있고 너트 체결시의 중요한 성능 요소는 체결력 부족에 의한 풀림과 과도한 체결에 의한 파손 및 강한 진동이나 외부 충격에 강건한 체결력 유지 등 조립 품질의 유지와 향상 및 제품 수명 보장을 위해 정확한 조임 토크, 각도 등이 요구된다. 현재 너트런너라는 제품명으로 판매되는 너트 체결기는 고토크 및 정밀토크제어, 정밀 각도제어 그리고 생산량 증대를 위한 고속운전 등의 특성들이 필요하며 고출력이 가능한 BLDC모터 및 너트체결기 전용의 정교한 토크제어에 필요한 고정밀 토크제어드라이버와 고속, 저속, 고응답의 정밀 속도 제어시스템의 개발이 요청되고 있으나 현재 고객이 요구하는 고정밀, 고토크 및 고속 작업특성을 만족시키지 못하고 있다. 따라서 본 논문에서는 정확한 체결 토크 및 고속 회전에서도 저진동 및 저소음을 구현할 수 있는 d축, q축의 좌표변환에 의한 벡터제어와 토크제어기반의 BLDC모터 가변속 제어와 너트런너의 제어 기술을 제안하고 여러 실험을 통해 성능 결과를 분석하여 제안한 제어가 너트런너 성능을 만족하는지를 확인 하였다. 또한 일단 운전 체결 방식(One Stage 운전 체결 방식)으로 패턴을 프로그램하여 10,000[rpm] 고속 운전 후 목표 토크로 정확히 체결됨을 확인하였으며 토크 리플에 의한 가체결 토크 검출의 문제점도 외란관측기을 사용하여 해결하였고 실험을 통해 검증하였다.

열박음 조건에 따른 전동기 회전축의 변형특성 (Strain Response of Motor Axis as Variation of Shrink Fitting)

  • 우병철;정연호;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.532-537
    • /
    • 2004
  • Shrink fitting is often a conventional mechanical fasteners and fastening methods with temperature difference. Localized heating of the material surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis as variation of constrained method with shrink fitting.

영구자석 여자전동기 회전부 축의 열박음에 따른 변형특성 (Distortion Response of Motor Axis with Permanent Magnet as Shrink Fitting)

  • 우병철;정연호;강도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1451-1453
    • /
    • 2003
  • Shrink fitting is often used to replace conventional mechanical fasteners and fastening methods. Localized heating of the mating surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis with shrink fitting of thermal expansion.

  • PDF

유아(幼兒)의 놀이복 디자인 개발 연구 (Design Development for Toddler's Playwear)

  • 이연희;박혜원
    • 한국의류학회지
    • /
    • 제33권8호
    • /
    • pp.1227-1240
    • /
    • 2009
  • This study examines the actual conditions of toddler playwear preference survey for design and function. The study develops proper indoor and outdoor playwear for toddlers based on the analysis. A survey of 200 parents with toddlers between 2 and 6 years old and 120 teachers was conducted to find the conditions and needs for playwear along with the necessary design elements. Second, 6 designs including 3 designs for indoor playwear and 3 designs for outdoor playwear were made. These designs emphasized on soil contamination part, color, pattern, form, material, detail, and fasteners. Art play and cooking play are considered for indoor playwear and ways to decrease contamination on sleeve hem, elbow, chest, and knee were determined through the use of yellow, green, and blue colors. Applying a character and separate top with sleeves were determined. Light with breathable and waterproof fabric was determined. The correct amount of Velcro fasteners or buttons was determined for front fastening in addition a pocket was considered necessary as a detail part. The common design for both boys and girls along with a proper design for diverse play were determined. For outdoor playwear, water play, sand play, movement play, and ecology experience are considered and ways to decease contamination on hip, sleeve hem, and knee should be applied to the design as determined through the use of yellow, green, blue, and red colors. The demands for pattern, form, material, and details were similar to indoor playwear. Zipper and buttons for front fastening were determined. These final 6 playwear designs are presented using CAD WALK DESIGNWARE.

단추와 단추구멍의 변천에 관한 연구 (A Study of the transitional Development of Buttons and Buttonholes)

  • 구애리나;이순홍
    • 복식
    • /
    • 제18권
    • /
    • pp.247-268
    • /
    • 1992
  • The Clothing expresses people's desire of beauty most directly of all cultural inheritances, and it teach us how the human culture has changed and developed. In this study researched the history of buttonholes which make the clothes more functional and beautiful. Buttons and Buttonholes is one of detailed elements they used as a fastener or as a decoration on clothing. Button have been used since ancient times, in early times long before buttons were used as fasteners they had significant decorative and symbolic value. In ancient times, clothes fastened with pins, brooches, fibular and ties. In medieval Europe, it was not until the 13th century that they used the button in functional use, and then Chong Ryung-Lk was introduced from orient, and they became popular as fasteners on clothing during the 13th century when fitted clothes replaced loose garments. Garments were laced together or fastened with buttons, until buttonholes were invented in the 13th century. But as early as the 14th century it appears that someone discovered that a loop slipped over a button, or button pushed through a slit in the cloth, would make a good clothes fastener. Many buttons made during the modern ages were convex medallions set in metal rims and decorated with partraits of famous men and women. During the modern ages, buttons, with ligh-ographed pictures, covered with celluloid of glass were popular. In the 19th century, the mass production by machine made people use the button easily, and many different material of button easily and many different material of button was made. With the begining of the 20th century. the development of plastics led to various and functional buttons. The type of buttonholes also became various, as bound buttonhole, Tailred buttonhole, Worked buttonhole, Loop buttonhole and so on. The button has many forms which were imitated by nature, or made geometrically and the appearance of the button from behind is classified by what has holes and what has holes and what has a shank, and I also classified the kinds of button by the quality of the material design and use. Like this, with the passing of the time buttons and buttonholes have changed in appearance with the change of clothes, and they have standed for something meaningful as well as fixed the opening and made clothes more beautiful.

  • PDF

Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Chen, Boshan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.595-614
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation on both the welded and screw fastened back-to-back built-up CFS unequal angle sections under axial compression. The load-axial shortening and the load verses lateral displacement behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated FE model was then used for the purpose of a parametric study to investigate the effect of different thicknesses, lengths and, yield stresses of steel on axial strength of back-to-back built-up CFS unequal angle sections. Five different thicknesses and seven different lengths (stub to slender columns) with two different yield stresses were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections.

Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns

  • Ananthi, G. Beulah Gnana;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.601-615
    • /
    • 2019
  • In cold-formed steel (CFS) structures, such as trusses, wall frames and columns, the use of back-to-back built-up CFS angle sections are becoming increasingly popular. In such an arrangement, intermediate fasteners are required at discrete points along the length, preventing the angle-sections from buckling independently. Limited research is available in the literature on the axial strength of back-to-back built-up CFS angle sections. The issue is addressed herein. This paper presents the results of 16 experimental tests, conducted on back-to-back built-up CFS screw fastened angle sections under axial compression. A nonlinear finite element model is then described, which includes material non-linearity, geometric imperfections and explicit modelling of the intermediate fasteners. The finite element model was validated against the experimental test results. The validated finite element model was then used for the purpose of a parametric study comprising 66 models. The effect of fastener spacing on axial strength was investigated. Four different cross-sections and two different thicknesses were analyzed in the parametric study, varying the slenderness ratio of the built-up columns from 20 to 120. Axial strengths obtained from the experimental tests and finite element analysis were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparison showed that the DSM is over-conservative by 13% on average. This paper has therefore proposed improved design rules for the DSM and verified their accuracy against the finite element and test results of back-to-back built-up CFS angle sections under axial compression.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.