• Title/Summary/Keyword: Fast-Time Simulation

Search Result 972, Processing Time 0.028 seconds

Improvement of Gibb's Phenomena in Fast Spin Echo Imaging Using Symmetric Echo Arrangement and Filtering (대칭적 에코 배치 및 필터링을 통한 Fast Spin Echo 영상에서의 Gibb's 현상 개선)

  • 안창범;김치영;오창현;신진교
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.79-85
    • /
    • 1997
  • Fast spin echo imaging utilizes multiple spin echoes to encode multiple k-space lines instead of multiple $T_2-weighted$ images. As results, intensities in k-space data are varying according to T2 decay, which generates Gibb's artifact in the reconstructed image. The echo time for e encoding dc block determines contrast, as is specified by the effective echo time, however, all location of other echoes to different k-space frequency blocks in fast spin echo imaging is not f fully investigated. In this study, symmetric arrangement of multiple echoes in k-space is investigated to reduce Gibb's artifact. Design of filters based on the measurement of multiple e echo intensities is also proposed in two stage manner, i.e., equalization and filtering. From s simulation and experiment, it was observed that Gibb's phenomena were substantially reduced b by the proposed methods.

  • PDF

Fast Image Reconstruction for Positron Emission Tomography Using Time-Of-Flight Information (양전자 방출 단층 촬영기의 비행 시간 정보를 이용한 고속 영상재구성)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.865-872
    • /
    • 2017
  • Recent advance in electronics and scintillators makes it possible to utilize the time-of-flight (TOF) information in improving image reconstruction of positron emission tomography(PET). In this paper, we propose a TOF-based fast image reconstruction method for PET. The proposed method uses the deconvolution of TOF data for each angle view and the rotational averaging of deconvolved images. Simulation results show an improved performance of the proposed method, as compared with filtered backprojection (FBP) method, TOF-FBP, and TOF version of expectation-maximization(EM) methods. Simulation results also show a great potentiality of the proposed method in limited angle tomography applications.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

Real-time simulation on B-spline deformable volume-part III (B-spline volume 변형체의 실시간 시뮬레이션 II)

  • 전성기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.70-77
    • /
    • 2002
  • Since our physical world cannot be modeled as rigid body, deformable object models are important. For real-time simulation of elastic object, it must be guaranteed by its exact solution and low-latency computational cost. In this paper, we describe the boundary integral equation formulation of linear elastic body and related boundary element method(BEM). The deformation of elastic body can be effectively solved with 1ow run-time computational costs, using precomputed Green Function and fast low-rank updates based on Capacitance Matrix Algorithm.

  • PDF

Analysis of decimation techniques to improve computational efficiency of a frequency-domain evaluation approach for real-time hybrid simulation

  • Guo, Tong;Xu, Weijie;Chen, Cheng
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1197-1220
    • /
    • 2014
  • Accurate actuator tracking is critical to achieve reliable real-time hybrid simulation results for earthquake engineering research. The frequency-domain evaluation approach provides an innovative way for more quantitative post-simulation evaluation of actuator tracking errors compared with existing time domain based techniques. Utilizing the Fast Fourier Transform the approach analyzes the actuator error in terms of amplitude and phrase errors. Existing application of the approach requires using the complete length of the experimental data. To improve the computational efficiency, two techniques including data decimation and frequency decimation are analyzed to reduce the amount of data involved in the frequency-domain evaluation. The presented study aims to enhance the computational efficiency of the approach in order to utilize it for future on-line actuator tracking evaluation. Both computational simulation and laboratory experimental results are analyzed and recommendations on the two decimation factors are provided based on the findings from this study.

A Scalable Semi-Implicit Method for Realtime Cloth Simulatio (계산량 조정이 가능한 실시간 옷감 시뮬레이션 방법)

  • Kim Myoung-Jun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.177-184
    • /
    • 2006
  • Since well-known explicit methods for cloth simulation were regarded unstable for large time steps or stiff springs, implicit methods have been proposed to achieve the stability. Large time step makes the simulation fast, and large stiffness enables a less elastic cloth property. Also, there have been efforts to devise so-called semi-implicit methods to achieve the stability and the speed together. In this paper we improve Kang's method (Kang and Cho 2002), and thus devise a scalable method for cloth simulation that varies from an almost explicit to a full implicit method. It is almost as fast as explicit methods and, more importantly, almost as stable as implicit methods allowing large time steps and stiff springs. Furthermore, it has a less artificial damping than the previously proposed semi-implicit methods.

A Coding Mode Image Characteristics-based Fast Direct Mode Decision Algorithm (코딩 모드 영상 특성기반의 고속 직접모드 결정 알고리즘)

  • Choi, Yung-Ho;Han, Soo-Hee;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1199-1203
    • /
    • 2012
  • H.264 adopted many compression tools to increase image data compression efficiency such as B frame bi-directional predictions, the direct mode coding and so on. Despite its high compression efficiency, H.264 can suffer from its long coding time due to the complicated tools of H.264. To realize a high performance H.264, several fast algorithms were proposed. One of them is adaptive fast direct mode decision algorithm using mode and Lagrangian cost prediction for B frame in H.264/AVC (MLP) algorithm which can determine the direct coding mode for macroblocks without a complex mode decision process. However, in this algorithm, macroblocks not satisfying the conditions of the MLP algorithm are required to process the complex mode decision calculation, yet suffering a long coding time. To overcome the problem, this paper proposes a fast direct mode prediction algorithm. Simulation results show that the proposed algorithm can determine the direct mode coding without a complex mode decision process for 42% more macroblocks and, this algorithm can reduce coding time by up to 23%, compared with Jin's algorithm. This enables to encode B frames fast with a less quality degradation.

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

THE FIT BETWEEN NEW PRODUCT STRATEGY AND VALUE CHAIN STRATEGY : A SYSTEM DYNAMICS PERSPECTIVE

  • Heungshik Oh;Kim, Bowon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.37-43
    • /
    • 2001
  • New product development has been a key element fur organizational evolution. The bulk of research about new product strategy has focused solely on new product development function itself. This paper investigates cross-functional elements in new product development. More specifically, we suggest that there must exist a fit between new product strategy and value chain strategy. It means that, in order to support new product development activity, there must exist a relevant value chain strategy. We consider three types of integration - internal integration, customer integration, and supplier integration - as strategic elements of value chain strategy. For the case of new product strategy, we consider market newness and product technology unfamiliarity as strategic elements. We also consider two types of learning characteristic, i.e., \\\"fast-adaptive learning\\\" and \\\"slow-adaptive leaning\\\" as control factor. Learning characteristic represents firms organizational capability related with organizational learning. For example, fur fast-adaptive learning case, the effect of integration appears early in time. System dynamics simulation is employed to verify our research framework. The results exhibit that there must exist cross-functional relationships between value chain strategy and new product strategy in order to shorten total development time.al development time.

  • PDF

유선 시뮬레이션 기법과 준해석해를 이용한 용질 거동 분석

  • 정대인;최종근;박광원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.57-62
    • /
    • 2004
  • Streamline simulation researches have been extensively accomplished due to the swiftness of computation and the reduction of numerical dispersion. In this study, we developed a streamline simulation model using a semianalytical solution of ID transport equation. To validate accuracy of the developed model, we compared simulation results of contaminant transport, which were acquired by streamline simulation models using an analytical solution, a numerical solution, and a semianalytical solution. The developed model using the semianalytical solution matched well with the model using an analytical solution. However, streamline simulation model using a numerical solution showed numerical dispersion. For an advection-dominant flow, there was little difference in the simulation results between the developed model and tile analytical model, but the differences between the analytical model and the numerical model were cleary shown. From the comparison of computing time we know that the streamline simulation using the semianalytical solution is 2-60 times as fast as the streamline simulation using the numerical solution.

  • PDF